- -

Synthesis of ordered mesoporous silica templated with biocompatible surfactants and applications in controlled release of drugs

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Synthesis of ordered mesoporous silica templated with biocompatible surfactants and applications in controlled release of drugs

Show simple item record

Files in this item

dc.contributor.author Botella Asuncion, Pablo es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.contributor.author Quesada Vilar, Manuel es_ES
dc.date.accessioned 2013-09-04T08:39:44Z
dc.date.available 2013-09-04T08:39:44Z
dc.date.issued 2012
dc.identifier.issn 0959-9428
dc.identifier.uri http://hdl.handle.net/10251/31741
dc.description.abstract [EN] A novel series of mesoporous silica materials has been developed by using non-ionic, biocompatible alkyl maltoside surfactants as organic structure directing agents and working under biomimetic conditions (e. g., room temperature and almost neutral pH) to avoid modifications of potential drugs occluded within. The obtained mesophases were tuned by changing the template and its concentration. These sugar surfactant-silica platforms were used as drug delivery carriers for ibuprofen, by encapsulating drug molecules within the hydrophobic core of the template micelles. The obtained surfactant-assisted delivery systems constitute a new approach towards controlled release of small therapeutic molecules. es_ES
dc.description.sponsorship The authors wish to thank CICYT (MAT2006-14274-C02-01) and CSIC (200880I092) for their financial support. We kindly appreciate the technical support of the Electronic Microscopy Service of UPV.
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation CICYT/MAT2006-14274-C02-01 es_ES
dc.relation CSIC/200880I092 es_ES
dc.relation.ispartof Journal of Materials Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Molecular-Sieves es_ES
dc.subject Room-Temperature es_ES
dc.subject Delivery System es_ES
dc.subject Neutral Ph es_ES
dc.subject Nanoparticles es_ES
dc.subject Water es_ES
dc.subject Mixtures es_ES
dc.subject Behavior es_ES
dc.subject Mcm-41 es_ES
dc.subject Cells es_ES
dc.subject Electron Microscopy Service of the UPV
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Synthesis of ordered mesoporous silica templated with biocompatible surfactants and applications in controlled release of drugs es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c2jm16291a
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Botella Asuncion, P.; Corma Canós, A.; Quesada Vilar, M. (2012). Synthesis of ordered mesoporous silica templated with biocompatible surfactants and applications in controlled release of drugs. Journal of Materials Chemistry. 22(13):6394-6401. doi:10.1039/c2jm16291a es_ES
dc.description.accrualMethod Senia es_ES
dc.relation.publisherversion http://dx.doi.org/10.1039/c2jm16291a es_ES
dc.description.upvformatpinicio 6394 es_ES
dc.description.upvformatpfin 6401 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 13 es_ES
dc.relation.senia 217109
dc.contributor.funder Comisión Interministerial de Ciencia y Tecnología
dc.contributor.funder Consejo Superior de Investigaciones Científicas
dc.relation.references Shi, J., Votruba, A. R., Farokhzad, O. C., & Langer, R. (2010). Nanotechnology in Drug Delivery and Tissue Engineering: From Discovery to Applications. Nano Letters, 10(9), 3223-3230. doi:10.1021/nl102184c es_ES
dc.relation.references Vallet-Regí, M., Balas, F., & Arcos, D. (2007). Mesoporous Materials for Drug Delivery. Angewandte Chemie International Edition, 46(40), 7548-7558. doi:10.1002/anie.200604488 es_ES
dc.relation.references Manzano, M., & Vallet-Regí, M. (2010). New developments in ordered mesoporous materials for drug delivery. Journal of Materials Chemistry, 20(27), 5593. doi:10.1039/b922651f es_ES
dc.relation.references Rosenholm, J. M., & Lindén, M. (2008). Towards establishing structure–activity relationships for mesoporous silica in drug delivery applications. Journal of Controlled Release, 128(2), 157-164. doi:10.1016/j.jconrel.2008.02.013 es_ES
dc.relation.references Unger, K., Rupprecht, H., Valentin, B., & Kircher, W. (1983). The use of porous and surface modified silicas as drug delivery and stabilizing agents. Drug Development and Industrial Pharmacy, 9(1-2), 69-91. doi:10.3109/03639048309048546 es_ES
dc.relation.references Hartmann, M. (2005). Ordered Mesoporous Materials for Bioadsorption and Biocatalysis. Chemistry of Materials, 17(18), 4577-4593. doi:10.1021/cm0485658 es_ES
dc.relation.references Vivero-Escoto, J. L., Slowing, I. I., Trewyn, B. G., & Lin, V. S.-Y. (2010). Mesoporous Silica Nanoparticles for Intracellular Controlled Drug Delivery. Small, 6(18), 1952-1967. doi:10.1002/smll.200901789 es_ES
dc.relation.references Vallet-Regi, M., Rámila, A., del Real, R. P., & Pérez-Pariente, J. (2001). A New Property of MCM-41:  Drug Delivery System. Chemistry of Materials, 13(2), 308-311. doi:10.1021/cm0011559 es_ES
dc.relation.references Doadrio, J. C., Sousa, E. M. B., Izquierdo-Barba, I., Doadrio, A. L., Perez-Pariente, J., & Vallet-Regí, M. (2006). Functionalization of mesoporous materials with long alkyl chains as a strategy for controlling drug delivery pattern. J. Mater. Chem., 16(5), 462-466. doi:10.1039/b510101h es_ES
dc.relation.references Lu, J., Choi, E., Tamanoi, F., & Zink, J. I. (2008). Light-Activated Nanoimpeller-Controlled Drug Release in Cancer Cells. Small, 4(4), 421-426. doi:10.1002/smll.200700903 es_ES
dc.relation.references Aznar, E., Martínez-Máñez, R., & Sancenón, F. (2009). Controlled release using mesoporous materials containing gate-like scaffoldings. Expert Opinion on Drug Delivery, 6(6), 643-655. doi:10.1517/17425240902895980 es_ES
dc.relation.references Zhao, Y., Vivero-Escoto, J. L., Slowing, I. I., Trewyn, B. G., & Lin, V. S.-Y. (2010). Capped mesoporous silica nanoparticles as stimuli-responsive controlled release systems for intracellular drug/gene delivery. Expert Opinion on Drug Delivery, 7(9), 1013-1029. doi:10.1517/17425247.2010.498816 es_ES
dc.relation.references Corma, A., Moliner, M., Díaz-Cabañas, M. J., Serna, P., Femenia, B., Primo, J., & García, H. (2008). Biomimetic synthesis of microporous and mesoporous materials at room temperature and neutral pH, with application in electronics, controlled release of chemicals, and catalysis. New Journal of Chemistry, 32(8), 1338. doi:10.1039/b808697b es_ES
dc.relation.references Corma, A., Díaz-Cabañas, M. J., Moliner, M., & Rodríguez, G. (2006). Synthesis of micro- and mesoporous molecular sieves at room temperature and neutral pH catalyzed by functional analogues of silicatein. Chem. Commun., (29), 3137-3139. doi:10.1039/b605909k es_ES
dc.relation.references Clifford, N. W., Iyer, K. S., & Raston, C. L. (2008). Encapsulation and controlled release of nutraceuticals using mesoporous silica capsules. J. Mater. Chem., 18(2), 162-165. doi:10.1039/b715100d es_ES
dc.relation.references He, Q., Shi, J., Chen, F., Zhu, M., & Zhang, L. (2010). An anticancer drug delivery system based on surfactant-templated mesoporous silica nanoparticles. Biomaterials, 31(12), 3335-3346. doi:10.1016/j.biomaterials.2010.01.015 es_ES
dc.relation.references Vlachy, N., Touraud, D., Heilmann, J., & Kunz, W. (2009). Determining the cytotoxicity of catanionic surfactant mixtures on HeLa cells. Colloids and Surfaces B: Biointerfaces, 70(2), 278-280. doi:10.1016/j.colsurfb.2008.12.038 es_ES
dc.relation.references Tyner, K. M., Schiffman, S. R., & Giannelis, E. P. (2004). Nanobiohybrids as delivery vehicles for camptothecin. Journal of Controlled Release, 95(3), 501-514. doi:10.1016/j.jconrel.2003.12.027 es_ES
dc.relation.references Li, F., Jin, L., Han, J., Wei, M., & Li, C. (2009). Synthesis and Controlled Release Properties of Prednisone Intercalated Mg−Al Layered Double Hydroxide Composite. Industrial & Engineering Chemistry Research, 48(12), 5590-5597. doi:10.1021/ie900043r es_ES
dc.relation.references Tsai, C.-H., Vivero-Escoto, J. L., Slowing, I. I., Fang, I.-J., Trewyn, B. G., & Lin, V. S.-Y. (2011). Surfactant-assisted controlled release of hydrophobic drugs using anionic surfactant templated mesoporous silica nanoparticles. Biomaterials, 32(26), 6234-6244. doi:10.1016/j.biomaterials.2011.04.077 es_ES
dc.relation.references Rahman, M. S., & Rankin, S. E. (2010). Predictive synthesis of ordered mesoporous silica with maltoside and cationic surfactants based on aqueous lyotropic phase behavior. Journal of Colloid and Interface Science, 342(1), 33-42. doi:10.1016/j.jcis.2009.10.021 es_ES
dc.relation.references Bagshaw, S. A., Prouzet, E., & Pinnavaia, T. J. (1995). Templating of Mesoporous Molecular Sieves by Nonionic Polyethylene Oxide Surfactants. Science, 269(5228), 1242-1244. doi:10.1126/science.269.5228.1242 es_ES
dc.relation.references Kim, S.-S., Pauly, T. R., & Pinnavaia, T. J. (2000). Non-ionic surfactant assembly of wormhole silica molecular sieves from water soluble silicates. Chemical Communications, (10), 835-836. doi:10.1039/b001012j es_ES
dc.relation.references Štangar, U. L., & Hüsing, N. (2003). Alkyl-glycoside surfactants in the synthesis of mesoporous silica films. Silicon Chemistry, 2(3/4), 157-165. doi:10.1023/b:silc.0000046724.80191.21 es_ES
dc.relation.references Pang, J., Eric Hampsey, J., Hu, Q., Wu, Z., John, V. T., & Lu, Y. (2004). Mesoporous silica with Ia3d cubic structure and good thermal stability. Chem. Commun., (6), 682-683. doi:10.1039/b316501a es_ES
dc.relation.references Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., … Schlenker, J. L. (1992). A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 114(27), 10834-10843. doi:10.1021/ja00053a020 es_ES
dc.relation.references Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60(2), 309-319. doi:10.1021/ja01269a023 es_ES
dc.relation.references Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, 73(1), 373-380. doi:10.1021/ja01145a126 es_ES
dc.relation.references Rosen, M. J., & Sulthana, S. B. (2001). The Interaction of Alkylglycosides with Other Surfactants. Journal of Colloid and Interface Science, 239(2), 528-534. doi:10.1006/jcis.2001.7537 es_ES
dc.relation.references Enders, S., & Kahl, H. (2007). Aggregation behaviour of n-alkyl-β-d-glucopyranoside+water+alcohol mixtures. Fluid Phase Equilibria, 261(1-2), 221-229. doi:10.1016/j.fluid.2007.07.038 es_ES
dc.relation.references Auvray, X., Petipas, C., Anthore, R., Rico-Lattes, I., & Lattes, A. (1995). X-ray Diffraction Study of the Ordered Lyotropic Phases Formed by Sugar-Based Surfactants. Langmuir, 11(2), 433-439. doi:10.1021/la00002a012 es_ES
dc.relation.references Petitto, C., Galarneau, A., Driole, M.-F., Chiche, B., Alonso, B., Di Renzo, F., & Fajula, F. (2005). Synthesis of Discrete Micrometer-Sized Spherical Particles of MCM-48. Chemistry of Materials, 17(8), 2120-2130. doi:10.1021/cm050068j es_ES
dc.relation.references Pouxviel, J. C., Boilot, J. P., Beloeil, J. C., & Lallemand, J. Y. (1987). NMR study of the sol/gel polymerization. Journal of Non-Crystalline Solids, 89(3), 345-360. doi:10.1016/s0022-3093(87)80277-6 es_ES
dc.relation.references Simonutti, R., Comotti, A., Bracco, S., & Sozzani, P. (2001). Surfactant Organization in MCM-41 Mesoporous Materials As Studied by13C and29Si Solid-State NMR. Chemistry of Materials, 13(3), 771-777. doi:10.1021/cm001088i es_ES
dc.relation.references Botella, P., Corma, A., & Navarro, M. T. (2007). Single Gold Nanoparticles Encapsulated in Monodispersed Regular Spheres of Mesostructured Silica Produced by Pseudomorphic Transformation. Chemistry of Materials, 19(8), 1979-1983. doi:10.1021/cm0629457 es_ES
dc.relation.references Kung, K. H. S., & Hayes, K. F. (1993). Fourier transform infrared spectroscopic study of the adsorption of cetyltrimethylammonium bromide and cetylpyridinium chloride on silica. Langmuir, 9(1), 263-267. doi:10.1021/la00025a050 es_ES
dc.relation.references Kačuráková, M., & Mathlouthi, M. (1996). FTIR and laser-Raman spectra of oligosaccharides in water: characterization of the glycosidic bond. Carbohydrate Research, 284(2), 145-157. doi:10.1016/0008-6215(95)00412-2 es_ES
dc.relation.references Holmberg, K. (2001). Natural surfactants. Current Opinion in Colloid & Interface Science, 6(2), 148-159. doi:10.1016/s1359-0294(01)00074-7 es_ES
dc.relation.references Wei, H., Zhang, X.-Z., Zhou, Y., Cheng, S.-X., & Zhuo, R.-X. (2006). Self-assembled thermoresponsive micelles of poly(N-isopropylacrylamide-b-methyl methacrylate). Biomaterials, 27(9), 2028-2034. doi:10.1016/j.biomaterials.2005.09.028 es_ES
dc.relation.references Allen, C., Maysinger, D., & Eisenberg, A. (1999). Nano-engineering block copolymer aggregates for drug delivery. Colloids and Surfaces B: Biointerfaces, 16(1-4), 3-27. doi:10.1016/s0927-7765(99)00058-2 es_ES
dc.relation.references He, Q., Shi, J., Zhu, M., Chen, Y., & Chen, F. (2010). The three-stage in vitro degradation behavior of mesoporous silica in simulated body fluid. Microporous and Mesoporous Materials, 131(1-3), 314-320. doi:10.1016/j.micromeso.2010.01.009 es_ES
dc.relation.references Higuchi, T. (1963). Mechanism of sustained‐action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. Journal of Pharmaceutical Sciences, 52(12), 1145-1149. doi:10.1002/jps.2600521210 es_ES


This item appears in the following Collection(s)

Show simple item record