- -

Green synthesis of Fe3O4 nanoparticles embedded in a porous carbon matrix and its use as anode material for Li-ion batteries

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Green synthesis of Fe3O4 nanoparticles embedded in a porous carbon matrix and its use as anode material for Li-ion batteries

Mostrar el registro completo del ítem

Latorre Sánchez, M.; Primo Arnau, AM.; García Gómez, H. (2012). Green synthesis of Fe3O4 nanoparticles embedded in a porous carbon matrix and its use as anode material for Li-ion batteries. Journal of Materials Chemistry. 22(40):21373-21375. doi:10.1039/c2jm34978g

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/31743

Ficheros en el ítem

Metadatos del ítem

Título: Green synthesis of Fe3O4 nanoparticles embedded in a porous carbon matrix and its use as anode material for Li-ion batteries
Autor: Latorre Sánchez, Marcos Primo Arnau, Ana María García Gómez, Hermenegildo
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
A scalable and simple process was developed for the preparation of Fe3O4 nanoparticles embedded in carbon using nontoxic and affordable materials. The resulting composite showed a high reversible capacity of 702 mA h g(-1) ...[+]
Palabras clave: One-Pot Synthesis , Of-The-Art , Electrode Materials , Negative-Electrode , Cyclic Stability , Ca-Alginate , Biosorption , Performance , Challenges , Conversion
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Materials Chemistry. (issn: 0959-9428 )
DOI: 10.1039/c2jm34978g
Editorial:
Royal Society of Chemistry
Versión del editor: http://dx.doi.org/10.1039/c2jm34978g
Tipo: Artículo

References

Aricò, A. S., Bruce, P., Scrosati, B., Tarascon, J.-M., & van Schalkwijk, W. (2005). Nanostructured materials for advanced energy conversion and storage devices. Nature Materials, 4(5), 366-377. doi:10.1038/nmat1368

Kang, K. (2006). Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries. Science, 311(5763), 977-980. doi:10.1126/science.1122152

Armand, M., & Tarascon, J.-M. (2008). Building better batteries. Nature, 451(7179), 652-657. doi:10.1038/451652a [+]
Aricò, A. S., Bruce, P., Scrosati, B., Tarascon, J.-M., & van Schalkwijk, W. (2005). Nanostructured materials for advanced energy conversion and storage devices. Nature Materials, 4(5), 366-377. doi:10.1038/nmat1368

Kang, K. (2006). Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries. Science, 311(5763), 977-980. doi:10.1126/science.1122152

Armand, M., & Tarascon, J.-M. (2008). Building better batteries. Nature, 451(7179), 652-657. doi:10.1038/451652a

Tirado, J. L. (2003). Inorganic materials for the negative electrode of lithium-ion batteries: state-of-the-art and future prospects. Materials Science and Engineering: R: Reports, 40(3), 103-136. doi:10.1016/s0927-796x(02)00125-0

Etacheri, V., Marom, R., Elazari, R., Salitra, G., & Aurbach, D. (2011). Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science, 4(9), 3243. doi:10.1039/c1ee01598b

Poizot, P., Laruelle, S., Grugeon, S., Dupont, L., & Tarascon, J.-M. (2000). Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 407(6803), 496-499. doi:10.1038/35035045

Yu, Y., Chen, C.-H., Shui, J.-L., & Xie, S. (2005). Nickel-Foam-Supported Reticular CoO-Li2O Composite Anode Materials for Lithium Ion Batteries. Angewandte Chemie International Edition, 44(43), 7085-7089. doi:10.1002/anie.200501905

Liu, D., Garcia, B. B., Zhang, Q., Guo, Q., Zhang, Y., Sepehri, S., & Cao, G. (2009). Mesoporous Hydrous Manganese Dioxide Nanowall Arrays with Large Lithium Ion Energy Storage Capacities. Advanced Functional Materials, 19(7), 1015-1023. doi:10.1002/adfm.200801515

Cabana, J., Monconduit, L., Larcher, D., & Palacín, M. R. (2010). Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions. Advanced Materials, 22(35), E170-E192. doi:10.1002/adma.201000717

Taberna, P. L., Mitra, S., Poizot, P., Simon, P., & Tarascon, J.-M. (2006). High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nature Materials, 5(7), 567-573. doi:10.1038/nmat1672

Ban, C., Wu, Z., Gillaspie, D. T., Chen, L., Yan, Y., Blackburn, J. L., & Dillon, A. C. (2010). Nanostructured Fe3O4/SWNT Electrode: Binder-Free and High-Rate Li-Ion Anode. Advanced Materials, 22(20), E145-E149. doi:10.1002/adma.200904285

Zhou, G., Wang, D.-W., Li, F., Zhang, L., Li, N., Wu, Z.-S., … Cheng, H.-M. (2010). Graphene-Wrapped Fe3O4Anode Material with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries. Chemistry of Materials, 22(18), 5306-5313. doi:10.1021/cm101532x

Zhu, T., Chen, J. S., & Lou, X. W. (David). (2011). Glucose-Assisted One-Pot Synthesis of FeOOH Nanorods and Their Transformation to Fe3O4@Carbon Nanorods for Application in Lithium Ion Batteries. The Journal of Physical Chemistry C, 115(19), 9814-9820. doi:10.1021/jp2013754

Liu, H., Wang, G., Wang, J., & Wexler, D. (2008). Magnetite/carbon core-shell nanorods as anode materials for lithium-ion batteries. Electrochemistry Communications, 10(12), 1879-1882. doi:10.1016/j.elecom.2008.09.036

He, Y., Huang, L., Cai, J.-S., Zheng, X.-M., & Sun, S.-G. (2010). Structure and electrochemical performance of nanostructured Fe3O4/carbon nanotube composites as anodes for lithium ion batteries. Electrochimica Acta, 55(3), 1140-1144. doi:10.1016/j.electacta.2009.10.014

Yang, Z., Shen, J., & Archer, L. A. (2011). An in situ method of creating metal oxide–carbon composites and their application as anode materials for lithium-ion batteries. Journal of Materials Chemistry, 21(30), 11092. doi:10.1039/c1jm10902b

Zhang, W.-M., Wu, X.-L., Hu, J.-S., Guo, Y.-G., & Wan, L.-J. (2008). Carbon Coated Fe3O4Nanospindles as a Superior Anode Material for Lithium-Ion Batteries. Advanced Functional Materials, 18(24), 3941-3946. doi:10.1002/adfm.200801386

Piao, Y., Kim, H. S., Sung, Y.-E., & Hyeon, T. (2010). Facile scalable synthesis of magnetitenanocrystals embedded in carbon matrix as superior anode materials for lithium-ion batteries. Chem. Commun., 46(1), 118-120. doi:10.1039/b920037a

Zhang, M., Lei, D., Yin, X., Chen, L., Li, Q., Wang, Y., & Wang, T. (2010). Magnetite/graphene composites: microwave irradiation synthesis and enhanced cycling and rate performances for lithium ion batteries. Journal of Materials Chemistry, 20(26), 5538. doi:10.1039/c0jm00638f

Yoon, T., Chae, C., Sun, Y.-K., Zhao, X., Kung, H. H., & Lee, J. K. (2011). Bottom-up in situ formation of Fe3O4 nanocrystals in a porous carbon foam for lithium-ion battery anodes. Journal of Materials Chemistry, 21(43), 17325. doi:10.1039/c1jm13450g

Behera, S. K. (2011). Enhanced rate performance and cyclic stability of Fe3O4–graphene nanocomposites for Li ion battery anodes. Chemical Communications, 47(37), 10371. doi:10.1039/c1cc13218k

Fundueanu, G., Nastruzzi, C., Carpov, A., Desbrieres, J., & Rinaudo, M. (1999). Physico-chemical characterization of Ca-alginate microparticles produced with different methods. Biomaterials, 20(15), 1427-1435. doi:10.1016/s0142-9612(99)00050-2

Davis, T. A., Volesky, B., & Mucci, A. (2003). A review of the biochemistry of heavy metal biosorption by brown algae. Water Research, 37(18), 4311-4330. doi:10.1016/s0043-1354(03)00293-8

YAKUPARINODOTCA, M. (2004). Biosorption of Hg2+, Cd2+, and Zn2+ by Ca-alginate and immobilized wood-rotting fungus Funalia trogii. Journal of Hazardous Materials, 109(1-3), 191-199. doi:10.1016/j.jhazmat.2004.03.017

Gibaud, A., Xue, J. S., & Dahn, J. R. (1996). A small angle X-ray scattering study of carbons made from pyrolyzed sugar. Carbon, 34(4), 499-503. doi:10.1016/0008-6223(95)00207-3

Raymundo-Piñero, E., Leroux, F., & Béguin, F. (2006). A High-Performance Carbon for Supercapacitors Obtained by Carbonization of a Seaweed Biopolymer. Advanced Materials, 18(14), 1877-1882. doi:10.1002/adma.200501905

Chen, J. S., Zhang, Y., & Lou, X. W. (David). (2011). One-Pot Synthesis of Uniform Fe3O4 Nanospheres with Carbon Matrix Support for Improved Lithium Storage Capabilities. ACS Applied Materials & Interfaces, 3(9), 3276-3279. doi:10.1021/am201079z

Bonhomme, F., Lassègues, J. C., & Servant, L. (2001). Raman Spectroelectrochemistry of a Carbon Supercapacitor. Journal of The Electrochemical Society, 148(11), E450. doi:10.1149/1.1409546

Sadezky, A., Muckenhuber, H., Grothe, H., Niessner, R., & Pöschl, U. (2005). Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon, 43(8), 1731-1742. doi:10.1016/j.carbon.2005.02.018

Verma, P., Maire, P., & Novák, P. (2010). A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochimica Acta, 55(22), 6332-6341. doi:10.1016/j.electacta.2010.05.072

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem