- -

Mimicking tricks from nature with sensory organic-inorganic hybrid materials

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


  • Estadisticas de Uso

Mimicking tricks from nature with sensory organic-inorganic hybrid materials

Show full item record

Martínez Mañez, R.; Sancenón Galarza, F.; Biyikal, M.; Hecht, M.; Rurack, K. (2011). Mimicking tricks from nature with sensory organic-inorganic hybrid materials. Journal of Materials Chemistry. 21(34):12588-12604. doi:10.1039/c1jm11210d

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/31746

Files in this item

Item Metadata

Title: Mimicking tricks from nature with sensory organic-inorganic hybrid materials
Author: Martínez Mañez, Ramón Sancenón Galarza, Félix Biyikal, M. Hecht, M. Rurack, Knut
UPV Unit: Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
Design strategies for (bio)chemical systems that are inspired by nature's accomplishments in system design and operation on various levels of complexity are increasingly gaining in importance. Within the broad field of ...[+]
Subjects: Bilayer membranes , Biomimetic chemistry , Chemical recognition , Chemical systems , Chemical transduction , Conventional methods , Design strategies , Inorganic supports , Ion channel , Mesoporous , Organic-inorganic hybrid materials , Protein binding , Sensory materials , Solid structures , Target analytes , Trans-membrane proteins , Biochemistry , Biomimetic materials , Biomimetics , Interfaces (materials) , Supramolecular chemistry , Systems analysis , Hybrid materials
Copyrigths: Reserva de todos los derechos
Journal of Materials Chemistry. (issn: 0959-9428 )
DOI: 10.1039/c1jm11210d
Royal Society of Chemistry
Publisher version: http://dx.doi.org/10.1039/c1jm11210d
Type: Artículo


Ma, M. (2007). Encoding Olfactory Signals via Multiple Chemosensory Systems. Critical Reviews in Biochemistry and Molecular Biology, 42(6), 463-480. doi:10.1080/10409230701693359

Leinders-Zufall, T., Lane, A. P., Puche, A. C., Ma, W., Novotny, M. V., Shipley, M. T., & Zufall, F. (2000). Ultrasensitive pheromone detection by mammalian vomeronasal neurons. Nature, 405(6788), 792-796. doi:10.1038/35015572

Serezani, C. H., Ballinger, M. N., Aronoff, D. M., & Peters-Golden, M. (2008). Cyclic AMP. American Journal of Respiratory Cell and Molecular Biology, 39(2), 127-132. doi:10.1165/rcmb.2008-0091tr [+]
Ma, M. (2007). Encoding Olfactory Signals via Multiple Chemosensory Systems. Critical Reviews in Biochemistry and Molecular Biology, 42(6), 463-480. doi:10.1080/10409230701693359

Leinders-Zufall, T., Lane, A. P., Puche, A. C., Ma, W., Novotny, M. V., Shipley, M. T., & Zufall, F. (2000). Ultrasensitive pheromone detection by mammalian vomeronasal neurons. Nature, 405(6788), 792-796. doi:10.1038/35015572

Serezani, C. H., Ballinger, M. N., Aronoff, D. M., & Peters-Golden, M. (2008). Cyclic AMP. American Journal of Respiratory Cell and Molecular Biology, 39(2), 127-132. doi:10.1165/rcmb.2008-0091tr

Shimada, T. (2006). Xenobiotic-Metabolizing Enzymes Involved in Activation and Detoxification of Carcinogenic Polycyclic Aromatic Hydrocarbons. Drug Metabolism and Pharmacokinetics, 21(4), 257-276. doi:10.2133/dmpk.21.257

Duncan, M. C., Ho, D. G., Huang, J., Jung, M. E., & Payne, G. S. (2007). Composite synthetic lethal identification of membrane traffic inhibitors. Proceedings of the National Academy of Sciences, 104(15), 6235-6240. doi:10.1073/pnas.0607773104

Helmreich, E. J. M. (2002). Environmental influences on signal transduction through membranes: a retrospective mini-review. Biophysical Chemistry, 100(1-3), 519-534. doi:10.1016/s0301-4622(02)00303-4

Anslyn, E. V. (2007). Supramolecular Analytical Chemistry. The Journal of Organic Chemistry, 72(3), 687-699. doi:10.1021/jo0617971

Descalzo, A. B., Martínez-Máñez, R., Sancenón, F., Hoffmann, K., & Rurack, K. (2006). The Supramolecular Chemistry of Organic–Inorganic Hybrid Materials. Angewandte Chemie International Edition, 45(36), 5924-5948. doi:10.1002/anie.200600734

Martínez-Máñez, R., Sancenón, F., Hecht, M., Biyikal, M., & Rurack, K. (2010). Nanoscopic optical sensors based on functional supramolecular hybrid materials. Analytical and Bioanalytical Chemistry, 399(1), 55-74. doi:10.1007/s00216-010-4198-2

Koshland, D. E. (1958). Application of a Theory of Enzyme Specificity to Protein Synthesis. Proceedings of the National Academy of Sciences, 44(2), 98-104. doi:10.1073/pnas.44.2.98

Hammes, G. G. (2002). Multiple Conformational Changes in Enzyme Catalysis†. Biochemistry, 41(26), 8221-8228. doi:10.1021/bi0260839

Lin, V. S.-Y., Lai, C.-Y., Huang, J., Song, S.-A., & Xu, S. (2001). Molecular Recognition Inside of Multifunctionalized Mesoporous Silicas:  Toward Selective Fluorescence Detection of Dopamine and Glucosamine. Journal of the American Chemical Society, 123(46), 11510-11511. doi:10.1021/ja016223m

Radu, D. R., Lai, C.-Y., Wiench, J. W., Pruski, M., & Lin, V. S.-Y. (2004). Gatekeeping Layer Effect:  A Poly(lactic acid)-coated Mesoporous Silica Nanosphere-Based Fluorescence Probe for Detection of Amino-Containing Neurotransmitters. Journal of the American Chemical Society, 126(6), 1640-1641. doi:10.1021/ja038222v

Descalzo, A. B., Rurack, K., Weisshoff, H., Martínez-Máñez, R., Marcos, M. D., Amorós, P., … Soto, J. (2005). Rational Design of a Chromo- and Fluorogenic Hybrid Chemosensor Material for the Detection of Long-Chain Carboxylates. Journal of the American Chemical Society, 127(1), 184-200. doi:10.1021/ja045683n

Comes, M., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., Villaescusa, L. A., … Beltrán, D. (2004). Chromogenic Discrimination of Primary Aliphatic Amines in Water with Functionalized Mesoporous Silica. Advanced Materials, 16(20), 1783-1786. doi:10.1002/adma.200400143

(s. f.). doi:10.1021/ol052298

García-Acosta, B., Comes, M., Bricks, J. L., Kudinova, M. A., Kurdyukov, V. V., Tolmachev, A. I., … Amorós, P. (2006). Sensory hybrid host materials for the selective chromo-fluorogenic detection of biogenic amines. Chem. Commun., (21), 2239-2241. doi:10.1039/b602497a

Comes, M., Marcos, M. D., Martínez-Máñez, R., Millán, M. C., Ros-Lis, J. V., Sancenón, F., … Villaescusa, L. A. (2006). Anchoring Dyes into Multidimensional Large-Pore Zeolites: A Prospective Use as Chromogenic Sensing Materials. Chemistry - A European Journal, 12(8), 2162-2170. doi:10.1002/chem.200500932

Comes, M., Rodríguez-López, G., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Beltrán, D. (2005). Host Solids Containing Nanoscale Anion-Binding Pockets and Their Use in Selective Sensing Displacement Assays. Angewandte Chemie International Edition, 44(19), 2918-2922. doi:10.1002/anie.200461511

Comes, M., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., Villaescusa, L. A., & Amorós, P. (2008). Hybrid materials with nanoscopic anion-binding pockets for the colorimetric sensing of phosphate in water using displacement assays. Chemical Communications, (31), 3639. doi:10.1039/b804396e

Comes, M., Aznar, E., Moragues, M., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Amorós, P. (2009). Mesoporous Hybrid Materials Containing Nanoscopic «Binding Pockets» for Colorimetric Anion Signaling in Water by using Displacement Assays. Chemistry - A European Journal, 15(36), 9024-9033. doi:10.1002/chem.200900890

Vašák, M. (2005). Advances in metallothionein structure and functions. Journal of Trace Elements in Medicine and Biology, 19(1), 13-17. doi:10.1016/j.jtemb.2005.03.003

Slocik, J. M., & Wright, D. W. (2003). Biomimetic Mineralization of Noble Metal Nanoclusters. Biomacromolecules, 4(5), 1135-1141. doi:10.1021/bm034003q

Lee, J.-W., & Helmann, J. D. (2007). Functional specialization within the Fur family of metalloregulators. BioMetals, 20(3-4), 485-499. doi:10.1007/s10534-006-9070-7

Lee, M. H., Lee, S. J., Jung, J. H., Lim, H., & Kim, J. S. (2007). Luminophore-immobilized mesoporous silica for selective Hg2+ sensing. Tetrahedron, 63(48), 12087-12092. doi:10.1016/j.tet.2007.08.113

Song, C., Zhang, X., Jia, C., Zhou, P., Quan, X., & Duan, C. (2010). Highly sensitive and selective fluorescence sensor based on functional SBA-15 for detection of Hg2+ in Aqueous Media. Talanta, 81(1-2), 643-649. doi:10.1016/j.talanta.2009.12.047

Métivier, R., Leray, I., Lebeau, B., & Valeur, B. (2005). A mesoporous silica functionalized by a covalently bound calixarene-based fluoroionophore for selective optical sensing of mercury(ii) in water. Journal of Materials Chemistry, 15(27-28), 2965. doi:10.1039/b501897h

Lee, S. J., Lee, J.-E., Seo, J., Jeong, I. Y., Lee, S. S., & Jung, J. H. (2007). Optical Sensor Based on Nanomaterial for the Selective Detection of Toxic Metal Ions. Advanced Functional Materials, 17(17), 3441-3446. doi:10.1002/adfm.200601202

Palomares, E., Vilar, R., & Durrant, J. R. (2004). Heterogeneous colorimetric sensor for mercuric saltsElectronic supplementary information (ESI) available: Materials and methods. See http://www.rsc.org/suppdata/cc/b3/b314138a/. Chemical Communications, (4), 362. doi:10.1039/b314138a

Wang, Y., Li, B., Zhang, L., Liu, L., Zuo, Q., & Li, P. (2010). A highly selective regenerable optical sensor for detection of mercury(ii) ion in water using organic–inorganic hybrid nanomaterials containing pyrene. New Journal of Chemistry, 34(9), 1946. doi:10.1039/c0nj00039f

Li, L.-L., Sun, H., Fang, C.-J., Xu, J., Jin, J.-Y., & Yan, C.-H. (2007). Optical sensors based on functionalized mesoporous silica SBA-15 for the detection of multianalytes (H+ and Cu2+) in water. Journal of Materials Chemistry, 17(42), 4492. doi:10.1039/b708857d

Zhang, H., Zhang, P., Ye, K., Sun, Y., Jiang, S., Wang, Y., & Pang, W. (2006). Mesoporous material grafted with luminescent molecules for the design of selective metal ion chemosensor. Journal of Luminescence, 117(1), 68-74. doi:10.1016/j.jlumin.2005.04.009

Gao, L., Wang, J. Q., Huang, L., Fan, X. X., Zhu, J. H., Wang, Y., & Zou, Z. G. (2007). Novel Inorganic−Organic Hybrid Fluorescence Chemosensor Derived from SBA-15 for Copper Cation. Inorganic Chemistry, 46(24), 10287-10293. doi:10.1021/ic7008732

Wang, J.-Q., Huang, L., Xue, M., Wang, Y., Gao, L., Zhu, J. H., & Zou, Z. (2008). Architecture of a Hybrid Mesoporous Chemosensor for Fe3+ by Covalent Coupling Bis-Schiff Base PMBA onto the CPTES-Functionalized SBA-15. The Journal of Physical Chemistry C, 112(13), 5014-5022. doi:10.1021/jp7099948

Gao, L., Wang, Y., Wang, J., Huang, L., Shi, L., Fan, X., … Li, Z. (2006). A Novel ZnII-Sensitive Fluorescent Chemosensor Assembled within Aminopropyl-Functionalized Mesoporous SBA-15. Inorganic Chemistry, 45(17), 6844-6850. doi:10.1021/ic0516562

Balaji, T., Sasidharan, M., & Matsunaga, H. (2005). Naked eye detection of cadmium using inorganic–organic hybrid mesoporous material. Analytical and Bioanalytical Chemistry, 384(2), 488-494. doi:10.1007/s00216-005-0187-2

Balaji, T., El-Safty, S. A., Matsunaga, H., Hanaoka, T., & Mizukami, F. (2006). Optical Sensors Based on Nanostructured Cage Materials for the Detection of Toxic Metal Ions. Angewandte Chemie International Edition, 45(43), 7202-7208. doi:10.1002/anie.200602453

El-Safty, S. A., Ismail, A. A., Matsunaga, H., & Mizukami, F. (2007). Optical Nanosensor Design with Uniform Pore Geometry and Large Particle Morphology. Chemistry - A European Journal, 13(33), 9245-9255. doi:10.1002/chem.200700499

El-Safty, S. A., Ismail, A. A., Matsunaga, H., Hanaoka, T., & Mizukami, F. (2008). Optical Nanoscale Pool-on-Surface Design for Control Sensing Recognition of Multiple Cations. Advanced Functional Materials, 18(10), 1485-1500. doi:10.1002/adfm.200701059

Ros-Lis, J. V., Casasús, R., Comes, M., Coll, C., Marcos, M. D., Martínez-Máñez, R., … Rurack, K. (2008). A Mesoporous 3D Hybrid Material with Dual Functionality for Hg2+Detection and Adsorption. Chemistry - A European Journal, 14(27), 8267-8278. doi:10.1002/chem.200800632

Lee, S. J., Bae, D. R., Han, W. S., Lee, S. S., & Jung, J. H. (2008). Different Morphological Organic–Inorganic Hybrid Nanomaterials as Fluorescent Chemosensors and Adsorbents for CuII Ions. European Journal of Inorganic Chemistry, 2008(10), 1559-1564. doi:10.1002/ejic.200701073

Lee, H. Y., Bae, D. R., Park, J. C., Song, H., Han, W. S., & Jung, J. H. (2009). A Selective Fluoroionophore Based on BODIPY-functionalized Magnetic Silica Nanoparticles: Removal of Pb2+ from Human Blood. Angewandte Chemie International Edition, 48(7), 1239-1243. doi:10.1002/anie.200804714

Haupt, K., & Mosbach, K. (2000). Molecularly Imprinted Polymers and Their Use in Biomimetic Sensors. Chemical Reviews, 100(7), 2495-2504. doi:10.1021/cr990099w

Wulff, G. (2002). Enzyme-like Catalysis by Molecularly Imprinted Polymers. Chemical Reviews, 102(1), 1-28. doi:10.1021/cr980039a

Sellergren, B. (1997). Noncovalent molecular imprinting: antibody-like molecular recognition in polymeric network materials. TrAC Trends in Analytical Chemistry, 16(6), 310-320. doi:10.1016/s0165-9936(97)00027-7

D�az-Garc�a, M. E., & La�n�o, R. B. (2004). Molecular Imprinting in Sol-Gel Materials: Recent Developments and Applications. Microchimica Acta, 149(1-2), 19-36. doi:10.1007/s00604-004-0274-7

Bossi, A., Bonini, F., Turner, A. P. F., & Piletsky, S. A. (2007). Molecularly imprinted polymers for the recognition of proteins: The state of the art. Biosensors and Bioelectronics, 22(6), 1131-1137. doi:10.1016/j.bios.2006.06.023

Nicholls, I. A., & Rosengren, J. P. (2001). Bioseparation, 10(6), 301-305. doi:10.1023/a:1021541631063

Chang, Y.-S., Ko, T.-H., Hsu, T.-J., & Syu, M.-J. (2009). Synthesis of an Imprinted Hybrid Organic−Inorganic Polymeric Sol−Gel Matrix Toward the Specific Binding and Isotherm Kinetics Investigation of Creatinine. Analytical Chemistry, 81(6), 2098-2105. doi:10.1021/ac802168w

Bass, J. D., & Katz, A. (2003). Thermolytic Synthesis of Imprinted Amines in Bulk Silica. Chemistry of Materials, 15(14), 2757-2763. doi:10.1021/cm021822t

Carlson, C. A., Lloyd, J. A., Dean, S. L., Walker, N. R., & Edmiston, P. L. (2006). Sensor for Fluorene Based on the Incorporation of an Environmentally Sensitive Fluorophore Proximal to a Molecularly Imprinted Binding Site. Analytical Chemistry, 78(11), 3537-3542. doi:10.1021/ac051375b

Shughart, E. L., Ahsan, K., Detty, M. R., & Bright, F. V. (2006). Site Selectively Templated and Tagged Xerogels for Chemical Sensors. Analytical Chemistry, 78(9), 3165-3170. doi:10.1021/ac060113m

Trammell, S. A., Zeinali, M., Melde, B. J., Charles, P. T., Velez, F. L., Dinderman, M. A., … Markowitz, M. A. (2008). Nanoporous Organosilicas as Preconcentration Materials for the Electrochemical Detection of Trinitrotoluene. Analytical Chemistry, 80(12), 4627-4633. doi:10.1021/ac702263t

Makote, R., & Collinson, M. M. (1998). Template Recognition in Inorganic−Organic Hybrid Films Prepared by the Sol−Gel Process. Chemistry of Materials, 10(9), 2440-2445. doi:10.1021/cm9801136

Makote, R., & Collinson, M. M. (1998). Dopamine recognition in templated silicate films. Chemical Communications, (3), 425-426. doi:10.1039/a705536f

Fireman-Shoresh, S., Avnir, D., & Marx, S. (2003). General Method for Chiral Imprinting of Sol−Gel Thin Films Exhibiting Enantioselectivity. Chemistry of Materials, 15(19), 3607-3613. doi:10.1021/cm0340734

Marx, S., Zaltsman, A., Turyan, I., & Mandler, D. (2004). Parathion Sensor Based on Molecularly Imprinted Sol−Gel Films. Analytical Chemistry, 76(1), 120-126. doi:10.1021/ac034531s

Turner, N. W., Jeans, C. W., Brain, K. R., Allender, C. J., Hlady, V., & Britt, D. W. (2006). From 3D to 2D: A Review of the Molecular Imprinting of Proteins. Biotechnology Progress, 22(6), 1474-1489. doi:10.1002/bp060122g

Xie, C., Liu, B., Wang, Z., Gao, D., Guan, G., & Zhang, Z. (2008). Molecular Imprinting at Walls of Silica Nanotubes for TNT Recognition. Analytical Chemistry, 80(2), 437-443. doi:10.1021/ac701767h

Tan, J., Wang, H.-F., & Yan, X.-P. (2009). Discrimination of Saccharides with a Fluorescent Molecular Imprinting Sensor Array Based on Phenylboronic Acid Functionalized Mesoporous Silica. Analytical Chemistry, 81(13), 5273-5280. doi:10.1021/ac900484x

Wang, H.-F., He, Y., Ji, T.-R., & Yan, X.-P. (2009). Surface Molecular Imprinting on Mn-Doped ZnS Quantum Dots for Room-Temperature Phosphorescence Optosensing of Pentachlorophenol in Water. Analytical Chemistry, 81(4), 1615-1621. doi:10.1021/ac802375a

Jentsch, T. J., Stein, V., Weinreich, F., & Zdebik, A. A. (2002). Molecular Structure and Physiological Function of Chloride Channels. Physiological Reviews, 82(2), 503-568. doi:10.1152/physrev.00029.2001

Morbach, S., & Krämer, R. (2002). Body Shaping under Water Stress: Osmosensing and Osmoregulation of Solute Transport in Bacteria. ChemBioChem, 3(5), 384. doi:10.1002/1439-7633(20020503)3:5<384::aid-cbic384>3.0.co;2-h

Wemmie, J. A., Price, M. P., & Welsh, M. J. (2006). Acid-sensing ion channels: advances, questions and therapeutic opportunities. Trends in Neurosciences, 29(10), 578-586. doi:10.1016/j.tins.2006.06.014

Bayley, H., & Martin, C. R. (2000). Resistive-Pulse SensingFrom Microbes to Molecules. Chemical Reviews, 100(7), 2575-2594. doi:10.1021/cr980099g

Jung, Y., Bayley, H., & Movileanu, L. (2006). Temperature-Responsive Protein Pores. Journal of the American Chemical Society, 128(47), 15332-15340. doi:10.1021/ja065827t

Jenkins, A. T. A., Boden, N., Bushby, R. J., Evans, S. D., Knowles, P. F., Miles, R. E., … Vancso, G. J. (1999). Microcontact Printing of Lipophilic Self-Assembled Monolayers for the Attachment of Biomimetic Lipid Bilayers to Surfaces. Journal of the American Chemical Society, 121(22), 5274-5280. doi:10.1021/ja983968s

Rose, L., & Jenkins, A. T. A. (2007). The effect of the ionophore valinomycin on biomimetic solid supported lipid DPPTE/EPC membranes. Bioelectrochemistry, 70(2), 387-393. doi:10.1016/j.bioelechem.2006.05.009

Tsukube, H., Takagi, K., Higashiyama, T., Iwachido, T., & Hayama, N. (1994). Biomimetic Membrane Transport: Interesting Ionophore Functions of Naturally Occurring Polyether Antibiotics toward Unusual Metal Cations and Amino Acid Ester Salts. Inorganic Chemistry, 33(13), 2984-2987. doi:10.1021/ic00091a043

Murillo, O., Suzuki, I., Abel, E., Murray, C. L., Meadows, E. S., Jin, T., & Gokel, G. W. (1997). Synthetic Transmembrane Channels:  Functional Characterization Using Solubility Calculations, Transport Studies, and Substituent Effects. Journal of the American Chemical Society, 119(24), 5540-5549. doi:10.1021/ja962694a

Sakai, N., Brennan, K. C., Weiss, L. A., & Matile, S. (1997). Toward Biomimetic Ion Channels Formed by Rigid-Rod Molecules:  Length-Dependent Ion-Transport Activity of Substituted Oligo(p-Phenylene)s. Journal of the American Chemical Society, 119(37), 8726-8727. doi:10.1021/ja971513h

Roks, M. F. M., & Nolte, R. J. M. (1992). Biomimetic macromolecular chemistry: design and synthesis of an artificial ion channel based on a polymer containing cofacially stacked crown ether rings. Incorporation in dihexadecyl phosphate vesicles and study of cobalt ion transport. Macromolecules, 25(20), 5398-5407. doi:10.1021/ma00046a042

Finn, J. T., Grunwald, M. E., & Yau, K.-W. (1996). Cyclic Nucleotide-Gated Ion Channels: An Extended Family With Diverse Functions. Annual Review of Physiology, 58(1), 395-426. doi:10.1146/annurev.ph.58.030196.002143

Levitan, I. B. (2006). Signaling protein complexes associated with neuronal ion channels. Nature Neuroscience, 9(3), 305-310. doi:10.1038/nn1647

Goldenberg, L. M., Bryce, M. R., & Petty, M. C. (1999). Chemosensor devices: voltammetric molecular recognition at solid interfaces. Journal of Materials Chemistry, 9(9), 1957-1974. doi:10.1039/a901825e

Bühlmann, P., Aoki, H., Xiao, K. P., Amemiya, S., Tohda, K., & Umezawa, Y. (1998). Chemical Sensing with Chemically Modified Electrodes that Mimic Gating at Biomembranes Incorporating Ion-Channel Receptors. Electroanalysis, 10(17), 1149-1158. doi:10.1002/(sici)1521-4109(199811)10:17<1149::aid-elan1149>3.0.co;2-n

Sugawara, M., Hirano, A., Bühlmann, P., & Umezawa, Y. (2002). Design and Application of Ion-Channel Sensors Based on Biological and Artificial Receptors. Bulletin of the Chemical Society of Japan, 75(2), 187-201. doi:10.1246/bcsj.75.187

Gadzekpo, V. P. Y., Xiao, K. P., Aoki, H., Bühlmann, P., & Umezawa, Y. (1999). Voltammetric Detection of the Polycation Protamine by the Use of Electrodes Modified with Self-Assembled Monolayers of Thioctic Acid. Analytical Chemistry, 71(22), 5109-5115. doi:10.1021/ac990580m

Gadzekpo, V. P. Y., Bühlmann, P., Xiao, K. P., Aoki, H., & Umezawa, Y. (2000). Development of an ion-channel sensor for heparin detection. Analytica Chimica Acta, 411(1-2), 163-173. doi:10.1016/s0003-2670(00)00740-6

Bandyopadhyay, K., Liu, H., Liu, S.-G., & Echegoyen, L. (2000). Self-assembled monolayers of bis-thioctic ester derivatives of oligoethyleneglycols: remarkable selectivity for K+/Na+ recognition. Chemical Communications, (2), 141-142. doi:10.1039/a905839g

Flink, S., Schönherr, H., Vancso, G. J., Geurts, F. A. J., van Leerdam, K. G. C., van Veggel, F. C. J. M., & Reinhoudt, D. N. (2000). Cation sensing by patterned self-assembled monolayers on gold. Journal of the Chemical Society, Perkin Transactions 2, (10), 2141-2146. doi:10.1039/b002606i

AOKI, H., UMEZAWA, Y., VERTOVA, A., & RONDININI, S. (2006). Ion-channel Sensors Based on ETH 1001 Ionophore Embedded in Charged-alkanethiol Self-assembled Monolayers on Gold Electrode Surfaces. Analytical Sciences, 22(12), 1581-1584. doi:10.2116/analsci.22.1581

Aoki, H., Hasegawa, K., Tohda, K., & Umezawa, Y. (2003). Voltammetric detection of inorganic phosphate using ion-channel sensing with self-assembled monolayers of a hydrogen bond-forming receptor. Biosensors and Bioelectronics, 18(2-3), 261-267. doi:10.1016/s0956-5663(02)00177-x

Aoki, H., & Umezawa, Y. (2003). Trace analysis of an oligonucleotide with a specific sequence using PNA-based ion-channel sensors. The Analyst, 128(6), 681. doi:10.1039/b300465a

Katayama, Y., Ohuchi, Y., Higashi, H., Kudo, Y., & Maeda, M. (2000). The Design of Cyclic AMP−Recognizing Oligopeptides and Evaluation of Its Capability for Cyclic AMP Recognition Using an Electrochemical System. Analytical Chemistry, 72(19), 4671-4674. doi:10.1021/ac990847h

Climent, E., Casasús, R., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., & Soto, J. (2008). Chromo-fluorogenic sensing of pyrophosphate in aqueous media using silica functionalised with binding and reactive units. Chemical Communications, (48), 6531. doi:10.1039/b813199f

Climent, E., Calero, P., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., & Soto, J. (2009). Selective Chromofluorogenic Sensing of Heparin by using Functionalised Silica Nanoparticles Containing Binding Sites and a Signalling Reporter. Chemistry - A European Journal, 15(8), 1816-1820. doi:10.1002/chem.200802074

Climent, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., Maquieira, A., & Amorós, P. (2010). Controlled Delivery Using Oligonucleotide-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 49(40), 7281-7283. doi:10.1002/anie.201001847

Ros-Lis, J. V., García, B., Jiménez, D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Valldecabres, M. C. (2004). Squaraines as Fluoro−Chromogenic Probes for Thiol-Containing Compounds and Their Application to the Detection of Biorelevant Thiols. Journal of the American Chemical Society, 126(13), 4064-4065. doi:10.1021/ja031987i

Sexton, L. T., Horne, L. P., & Martin, C. R. (2007). Developing synthetic conical nanopores for biosensing applications. Molecular BioSystems, 3(10), 667. doi:10.1039/b708725j

Siwy, Z., Trofin, L., Kohli, P., Baker, L. A., Trautmann, C., & Martin, C. R. (2005). Protein Biosensors Based on Biofunctionalized Conical Gold Nanotubes. Journal of the American Chemical Society, 127(14), 5000-5001. doi:10.1021/ja043910f

Siwy, Z., Heins, E., Harrell, C. C., Kohli, P., & Martin, C. R. (2004). Conical-Nanotube Ion-Current Rectifiers:  The Role of Surface Charge. Journal of the American Chemical Society, 126(35), 10850-10851. doi:10.1021/ja047675c

Heins, E. A., Siwy, Z. S., Baker, L. A., & Martin, C. R. (2005). Detecting Single Porphyrin Molecules in a Conically Shaped Synthetic Nanopore. Nano Letters, 5(9), 1824-1829. doi:10.1021/nl050925i

Liu, A., Zhao, Q., & Guan, X. (2010). Stochastic nanopore sensors for the detection of terrorist agents: Current status and challenges. Analytica Chimica Acta, 675(2), 106-115. doi:10.1016/j.aca.2010.07.001

Wang, D., Zhao, Q., Zoysa, R. S. S. de, & Guan, X. (2009). Detection of nerve agent hydrolytes in an engineered nanopore. Sensors and Actuators B: Chemical, 139(2), 440-446. doi:10.1016/j.snb.2009.02.069

Jayawardhana, D. A., Crank, J. A., Zhao, Q., Armstrong, D. W., & Guan, X. (2009). Nanopore Stochastic Detection of a Liquid Explosive Component and Sensitizers Using Boromycin and an Ionic Liquid Supporting Electrolyte. Analytical Chemistry, 81(1), 460-464. doi:10.1021/ac801877g

Nozawa, K., Osono, C., & Sugawara, M. (2007). Biotinylated MCM-41 channels as a sensing element in planar bilayer lipid membranes. Sensors and Actuators B: Chemical, 126(2), 632-640. doi:10.1016/j.snb.2007.04.014

Trewyn, B. G., Slowing, I. I., Giri, S., Chen, H.-T., & Lin, V. S.-Y. (2007). Synthesis and Functionalization of a Mesoporous Silica Nanoparticle Based on the Sol–Gel Process and Applications in Controlled Release. Accounts of Chemical Research, 40(9), 846-853. doi:10.1021/ar600032u

Rich, T. C., & Karpen, J. W. (2002). Review Article: Cyclic AMP Sensors in Living Cells: What Signals Can They Actually Measure? Annals of Biomedical Engineering, 30(8), 1088-1099. doi:10.1114/1.1511242

Oh-hora, M., & Rao, A. (2008). Calcium signaling in lymphocytes. Current Opinion in Immunology, 20(3), 250-258. doi:10.1016/j.coi.2008.04.004

Climent, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., Rurack, K., & Amorós, P. (2009). The Determination of Methylmercury in Real Samples Using Organically Capped Mesoporous Inorganic Materials Capable of Signal Amplification. Angewandte Chemie International Edition, 48(45), 8519-8522. doi:10.1002/anie.200904243

Climent, E., Bernardos, A., Martínez-Máñez, R., Maquieira, A., Marcos, M. D., Pastor-Navarro, N., … Amorós, P. (2009). Controlled Delivery Systems Using Antibody-Capped Mesoporous Nanocontainers. Journal of the American Chemical Society, 131(39), 14075-14080. doi:10.1021/ja904456d

Casasús, R., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., & Amorós, P. (2006). New Methods for Anion Recognition and Signaling Using Nanoscopic Gatelike Scaffoldings. Angewandte Chemie International Edition, 45(40), 6661-6664. doi:10.1002/anie.200602045

Coll, C., Casasús, R., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Amorós, P. (2007). Nanoscopic hybrid systems with a polarity-controlled gate-like scaffolding for the colorimetric signalling of long-chain carboxylates. Chem. Commun., (19), 1957-1959. doi:10.1039/b617703d

Coll, C., Aznar, E., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., Soto, J., … Ruiz, E. (2010). Fatty Acid Carboxylate- and Anionic Surfactant-Controlled Delivery Systems That Use Mesoporous Silica Supports. Chemistry - A European Journal, 16(33), 10048-10061. doi:10.1002/chem.200903125

Aznar, E., Coll, C., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Ruiz, E. (2009). Borate-Driven Gatelike Scaffolding Using Mesoporous Materials Functionalised with Saccharides. Chemistry - A European Journal, 15(28), 6877-6888. doi:10.1002/chem.200900090

Davis, R. W., Flores, A., Barrick, T. A., Cox, J. M., Brozik, S. M., Lopez, G. P., & Brozik, J. A. (2007). Nanoporous Microbead Supported Bilayers:  Stability, Physical Characterization, and Incorporation of Functional Transmembrane Proteins. Langmuir, 23(7), 3864-3872. doi:10.1021/la062576t

Chemburu, S., Ji, E., Casana, Y., Wu, Y., Buranda, T., Schanze, K. S., … Whitten, D. G. (2008). Conjugated Polyelectrolyte Supported Bead Based Assays for Phospholipase A2Activity†. The Journal of Physical Chemistry B, 112(46), 14492-14499. doi:10.1021/jp803358j

Zeineldin, R., Piyasena, M. E., Sklar, L. A., Whitten, D., & Lopez, G. P. (2008). Detection of Membrane Biointeractions Based on Fluorescence Superquenching. Langmuir, 24(8), 4125-4131. doi:10.1021/la703575r

Stefan, R.-I., Staden, J. F. van, & Aboul-Enein, H. Y. (1999). Electrochemical Sensor Arrays. Critical Reviews in Analytical Chemistry, 29(2), 133-153. doi:10.1080/10408349891199293

Orellana, G., & Haigh, D. (2008). New Trends in Fiber-Optic Chemical and Biological Sensors. Current Analytical Chemistry, 4(4), 273-295. doi:10.2174/157341108785914871

Gopalakrishnan, G., Thostrup, P., Rouiller, I., Lucido, A. L., Belkaïd, W., Colman, D. R., & Lennox, R. B. (2009). Lipid Bilayer Membrane-Triggered Presynaptic Vesicle Assembly. ACS Chemical Neuroscience, 1(2), 86-94. doi:10.1021/cn900011n

Kepplinger, C., Höfer, I., & Steinem, C. (2009). Impedance analysis of valinomycin activity in nano-BLMs. Chemistry and Physics of Lipids, 160(2), 109-113. doi:10.1016/j.chemphyslip.2009.05.001

Studer, A., Han, X., Winkler, F. K., & Tiefenauer, L. X. (2009). Formation of individual protein channels in lipid bilayers suspended in nanopores. Colloids and Surfaces B: Biointerfaces, 73(2), 325-331. doi:10.1016/j.colsurfb.2009.06.006

Favero, G., Campanella, L., Cavallo, S., D’Annibale, A., Perrella, M., Mattei, E., & Ferri, T. (2005). Glutamate Receptor Incorporated in a Mixed Hybrid Bilayer Lipid Membrane Array, as a Sensing Element of a Biosensor Working under Flowing Conditions. Journal of the American Chemical Society, 127(22), 8103-8111. doi:10.1021/ja042904g

Huang, Y., Palkar, P. V., Li, L.-J., Zhang, H., & Chen, P. (2010). Integrating carbon nanotubes and lipid bilayer for biosensing. Biosensors and Bioelectronics, 25(7), 1834-1837. doi:10.1016/j.bios.2009.12.011

Martinez, J. A., Misra, N., Wang, Y., Stroeve, P., Grigoropoulos, C. P., & Noy, A. (2009). Highly Efficient Biocompatible Single Silicon Nanowire Electrodes with Functional Biological Pore Channels. Nano Letters, 9(3), 1121-1126. doi:10.1021/nl8036504

Becucci, L., D’Amico, M., Daniele, S., Olivotto, M., Pozzi, A., & Guidelli, R. (2010). A metal-supported biomimetic micromembrane allowing the recording of single-channel activity and of impedance spectra of membrane proteins. Bioelectrochemistry, 78(2), 176-180. doi:10.1016/j.bioelechem.2009.08.007

Nery, L. E. M., & de Lauro Castrucci, A. M. (1997). Pigment cell signalling for physiological color change. Comparative Biochemistry and Physiology Part A: Physiology, 118(4), 1135-1144. doi:10.1016/s0300-9629(97)00045-5

Visconti, M. A., Ramanzini, G. C., Camargo, C. R., & Castrucci, A. M. L. (1999). Elasmobranch color change: A short review and novel data on hormone regulation. Journal of Experimental Zoology, 284(5), 485-491. doi:10.1002/(sici)1097-010x(19991001)284:5<485::aid-jez3>3.0.co;2-5

OSHIMA, N. (2001). Direct Reception of Light by Chromatophores of Lower Vertebrates. Pigment Cell Research, 14(5), 312-319. doi:10.1034/j.1600-0749.2001.140502.x

McNamara, J., & Ribeiro, M. (2000). The calcium dependence of pigment translocation in freshwater shrimp red ovarian chromatophores. The Biological Bulletin, 198(3), 357-366. doi:10.2307/1542691

Sherbrooke, W. C., de L. Castrucci, A. M., & Hadley, M. E. (1994). Temperature Effects on in vitro Skin Darkening in the Mountain Spiny Lizard, Sceloporus jarrovi: A Thermoregulatory Adaptation? Physiological Zoology, 67(3), 659-672. doi:10.1086/physzool.67.3.30163763

King, R. B., Hauff, S., & Phillips, J. B. (1994). Physiological Color Change in the Green Treefrog: Responses to Background Brightness and Temperature. Copeia, 1994(2), 422. doi:10.2307/1446990

Wang, Z., & Ma, L. (2009). Gold nanoparticle probes. Coordination Chemistry Reviews, 253(11-12), 1607-1618. doi:10.1016/j.ccr.2009.01.005

Suzuki, D., & Kawaguchi, H. (2006). Hybrid Microgels with Reversibly Changeable Multiple Brilliant Color. Langmuir, 22(8), 3818-3822. doi:10.1021/la052999f

Lee, J., & Kotov, N. A. (2007). Thermometer design at the nanoscale. Nano Today, 2(1), 48-51. doi:10.1016/s1748-0132(07)70019-1

Lee, J., Govorov, A. O., & Kotov, N. A. (2005). Nanoparticle Assemblies with Molecular Springs: A Nanoscale Thermometer. Angewandte Chemie International Edition, 44(45), 7439-7442. doi:10.1002/anie.200501264

Lupitskyy, R., Motornov, M., & Minko, S. (2008). Single Nanoparticle Plasmonic Devices by the «Grafting to» Method. Langmuir, 24(16), 8976-8980. doi:10.1021/la801068k

Brites, C. D. S., Lima, P. P., Silva, N. J. O., Millán, A., Amaral, V. S., Palacio, F., & Carlos, L. D. (2010). A Luminescent Molecular Thermometer for Long-Term Absolute Temperature Measurements at the Nanoscale. Advanced Materials, 22(40), 4499-4504. doi:10.1002/adma.201001780




This item appears in the following Collection(s)

Show full item record