- -

Synergy between the metal nanoparticles and the support for the hydrogenation of functionalized carboxylic acids to diols on Ru/TiO2

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Synergy between the metal nanoparticles and the support for the hydrogenation of functionalized carboxylic acids to diols on Ru/TiO2

Mostrar el registro completo del ítem

Primo Arnau, AM.; Concepción Heydorn, P.; Corma Canós, A. (2011). Synergy between the metal nanoparticles and the support for the hydrogenation of functionalized carboxylic acids to diols on Ru/TiO2. CHEMICAL COMMUNICATIONS. 47(12):3613-3615. https://doi.org/10.1039/c0cc05206j

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/31943

Ficheros en el ítem

Metadatos del ítem

Título: Synergy between the metal nanoparticles and the support for the hydrogenation of functionalized carboxylic acids to diols on Ru/TiO2
Autor: Primo Arnau, Ana María Concepción Heydorn, Patricia Corma Canós, Avelino
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
Ruthenium nanoparticles supported on titania are over three times more active than conventional ruthenium on carbon for the hydrogenation of lactic acid. This superior catalytic activity can be due to a combined action of ...[+]
Palabras clave: Carbon , Carboxylic acid , Lactic acid , Metal nanoparticle , Propionic acid , Ruthenium , Titanium dioxide , Article , Catalysis , Hydrogenation , Reduction , Alcohols , Carboxylic Acids , Hydrogen , Metal Nanoparticles , Substrate Specificity , Titanium
Derechos de uso: Cerrado
Fuente:
CHEMICAL COMMUNICATIONS. (issn: 1359-7345 ) (eissn: 1364-548X )
DOI: 10.1039/c0cc05206j
Editorial:
Royal Society of Chemistry
Versión del editor: http://dx.doi.org/10.1039/c0cc05206j
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//PROMETEO08%2F2008%2F130/ES/Química sostenible: Catalizadores moleculares y supramoleculares altamente selectivos, estables y energéticamente eficientes en reacciones químicas/
Agradecimientos:
Financial support by the Spanish MICNN (Consolider-Ingenio 2010 (Proyecto MULTICAT)) and Generalidad Valenciana (Prometeo/2008/130) is gratefully acknowledged. A.P. thanks the Generalitat Valenciana for a Prometeo research ...[+]
Tipo: Artículo

References

Lauridsen, J. B. (1976). Food emulsifiers: Surface activity, edibility, manufacture, composition, and application. Journal of the American Oil Chemists’ Society, 53(6Part2), 400-407. doi:10.1007/bf02605731

McAlees, A. J., & McCrindle, R. (1969). Catalytic hydrogenations of cyclic imides and ayhydrides. Journal of the Chemical Society C: Organic, (19), 2425. doi:10.1039/j39690002425

Adkins, H., & Billica, H. R. (1948). Effect of Ratio of Catalyst and Other Factors upon the Rate of Hydrogenation. Journal of the American Chemical Society, 70(9), 3118-3120. doi:10.1021/ja01189a084 [+]
Lauridsen, J. B. (1976). Food emulsifiers: Surface activity, edibility, manufacture, composition, and application. Journal of the American Oil Chemists’ Society, 53(6Part2), 400-407. doi:10.1007/bf02605731

McAlees, A. J., & McCrindle, R. (1969). Catalytic hydrogenations of cyclic imides and ayhydrides. Journal of the Chemical Society C: Organic, (19), 2425. doi:10.1039/j39690002425

Adkins, H., & Billica, H. R. (1948). Effect of Ratio of Catalyst and Other Factors upon the Rate of Hydrogenation. Journal of the American Chemical Society, 70(9), 3118-3120. doi:10.1021/ja01189a084

Bowden, E., & Adkins, H. (1934). Hydrogenation of Optically Active Compounds over Nickel and Copper—Chromium Oxide. Journal of the American Chemical Society, 56(3), 689-691. doi:10.1021/ja01318a046

BROADBENT, H. S., CAMPBELL, G. C., BARTLEY, W. J., & JOHNSON, J. H. (1959). Rhenium and Its Compounds as Hydrogenation Catalysts. III. Rhenium Heptoxide1,2,3. The Journal of Organic Chemistry, 24(12), 1847-1854. doi:10.1021/jo01094a003

Augustine, R. L. (1997). Selective heterogeneously catalyzed hydrogenations. Catalysis Today, 37(4), 419-440. doi:10.1016/s0920-5861(97)00025-4

Mendes, M. ., Santos, O. A. ., Jordão, E., & Silva, A. . (2001). Hydrogenation of oleic acid over ruthenium catalysts. Applied Catalysis A: General, 217(1-2), 253-262. doi:10.1016/s0926-860x(01)00613-5

Nomura, K., Ogura, H., & Imanishi, Y. (2002). Ruthenium catalyzed hydrogenation of methyl phenylacetate under low hydrogen pressure. Journal of Molecular Catalysis A: Chemical, 178(1-2), 105-114. doi:10.1016/s1381-1169(01)00281-3

Pouilloux, Y., Piccirilli, A., & Barrault, J. (1996). Selective hydrogenation into oleyl alcohol of methyl oleate in the presence of RuSnAl2O3 catalysts. Journal of Molecular Catalysis A: Chemical, 108(3), 161-166. doi:10.1016/1381-1169(96)00010-6

Tahara, K., Nagahara, E., Itoi, Y., Nishiyama, S., Tsuruya, S., & Masai, M. (1997). Liquid-phase hydrogenation of car☐ylic acid on supported bimetallic RuSn-Alumina catalysts. Applied Catalysis A: General, 154(1-2), 75-86. doi:10.1016/s0926-860x(96)00361-4

Tahara, K., Tsuji, H., Kimura, H., Okazaki, T., Itoi, Y., Nishiyama, S., … Masai, M. (1996). Liquid-phase hydrogenation of dicarboxylates catalyzed by supported Ru-Sn catalysts. Catalysis Today, 28(3), 267-272. doi:10.1016/0920-5861(95)00247-2

Toba, M., Tanaka, S., Niwa, S., Mizukami, F., Koppány, Z., & Guczi, L. (1998). Journal of Sol-Gel Science and Technology, 13(1/3), 1037-1041. doi:10.1023/a:1008672601665

Toba, M., Tanaka, S., Niwa, S., Mizukami, F., Koppány, Z., Guczi, L., … Tang, T.-S. (1999). Synthesis of alcohols and diols by hydrogenation of carboxylic acids and esters over Ru–Sn–Al2O3 catalysts. Applied Catalysis A: General, 189(2), 243-250. doi:10.1016/s0926-860x(99)00281-1

Jahjah, M., Kihn, Y., Teuma, E., & Gómez, M. (2010). Ruthenium nanoparticles supported on multi-walled carbon nanotubes: Highly effective catalytic system for hydrogenation processes. Journal of Molecular Catalysis A: Chemical, 332(1-2), 106-112. doi:10.1016/j.molcata.2010.09.006

Zhang, Z., Jackson, J. E., & Miller, D. J. (2001). Aqueous-phase hydrogenation of lactic acid to propylene glycol. Applied Catalysis A: General, 219(1-2), 89-98. doi:10.1016/s0926-860x(01)00669-x

Takasaki, M., Motoyama, Y., Higashi, K., Yoon, S.-H., Mochida, I., & Nagashima, H. (2007). Ruthenium Nanoparticles on Nano-Level-Controlled Carbon Supports as Highly Effective Catalysts for Arene Hydrogenation. Chemistry – An Asian Journal, 2(12), 1524-1533. doi:10.1002/asia.200700175

Benfield, R. E. (1992). Mean coordination numbers and the non-metal–metal transition in clusters. J. Chem. Soc., Faraday Trans., 88(8), 1107-1110. doi:10.1039/ft9928801107

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem