Hill, H. H., & Martin, S. J. (2002). Conventional analytical methods for chemical warfare agents. Pure and Applied Chemistry, 74(12), 2281-2291. doi:10.1351/pac200274122281
Eubanks, L. M., Dickerson, T. J., & Janda, K. D. (2007). Technological advancements for the detection of and protection against biological and chemical warfare agents. Chemical Society Reviews, 36(3), 458. doi:10.1039/b615227a
Royo, S., Martínez-Máñez, R., Sancenón, F., Costero, A. M., Parra, M., & Gil, S. (2007). Chromogenic and fluorogenic reagents for chemical warfare nerve agents’ detection. Chemical Communications, (46), 4839. doi:10.1039/b707063b
[+]
Hill, H. H., & Martin, S. J. (2002). Conventional analytical methods for chemical warfare agents. Pure and Applied Chemistry, 74(12), 2281-2291. doi:10.1351/pac200274122281
Eubanks, L. M., Dickerson, T. J., & Janda, K. D. (2007). Technological advancements for the detection of and protection against biological and chemical warfare agents. Chemical Society Reviews, 36(3), 458. doi:10.1039/b615227a
Royo, S., Martínez-Máñez, R., Sancenón, F., Costero, A. M., Parra, M., & Gil, S. (2007). Chromogenic and fluorogenic reagents for chemical warfare nerve agents’ detection. Chemical Communications, (46), 4839. doi:10.1039/b707063b
Van Houten, K. A., Heath, D. C., & Pilato, R. S. (1998). Rapid Luminescent Detection of Phosphate Esters in Solution and the Gas Phase Using (dppe)Pt{S2C2(2-pyridyl)(CH2CH2OH)}. Journal of the American Chemical Society, 120(47), 12359-12360. doi:10.1021/ja982365d
Imaoka, T., Horiguchi, H., & Yamamoto, K. (2003). Metal Assembly in Novel Dendrimers with Porphyrin Cores. Journal of the American Chemical Society, 125(2), 340-341. doi:10.1021/ja0285060
Dale, T. J., & Rebek, J. (2006). Fluorescent Sensors for Organophosphorus Nerve Agent Mimics. Journal of the American Chemical Society, 128(14), 4500-4501. doi:10.1021/ja057449i
Bencic-Nagale, S., Sternfeld, T., & Walt, D. R. (2006). Microbead Chemical Switches: An Approach to Detection of Reactive Organophosphate Chemical Warfare Agent Vapors. Journal of the American Chemical Society, 128(15), 5041-5048. doi:10.1021/ja057057b
Wallace, K. J., Morey, J., Lynch, V. M., & Anslyn, E. V. (2005). Colorimetric detection of chemical warfare simulants. New Journal of Chemistry, 29(11), 1469. doi:10.1039/b506100h
Wallace, K. J., Fagbemi, R. I., Folmer-Andersen, F. J., Morey, J., Lynth, V. M., & Anslyn, E. V. (2006). Detection of chemical warfare simulants by phosphorylation of a coumarin oximate. Chemical Communications, (37), 3886. doi:10.1039/b609861d
Han, S., Xue, Z., Wang, Z., & Wen, T. B. (2010). Visual and fluorogenic detection of a nerve agent simulant via a Lossen rearrangement of rhodamine–hydroxamate. Chemical Communications, 46(44), 8413. doi:10.1039/c0cc02881a
Jenkins, A. L., & Bae, S. Y. (2005). Molecularly imprinted polymers for chemical agent detection in multiple water matrices. Analytica Chimica Acta, 542(1), 32-37. doi:10.1016/j.aca.2004.12.088
Southard, G. E., Van Houten, K. A., Ott, E. W., & Murray, G. M. (2007). Luminescent sensing of organophosphates using europium(III) containing imprinted polymers prepared by RAFT polymerization. Analytica Chimica Acta, 581(2), 202-207. doi:10.1016/j.aca.2006.08.027
Pavlov, V., Xiao, Y., & Willner, I. (2005). Inhibition of the Acetycholine Esterase-Stimulated Growth of Au Nanoparticles: Nanotechnology-Based Sensing of Nerve Gases. Nano Letters, 5(4), 649-653. doi:10.1021/nl050054c
Kong, L., Wang, J., Luo, T., Meng, F., Chen, X., Li, M., & Liu, J. (2010). Novel pyrenehexafluoroisopropanol derivative-decorated single-walled carbon nanotubes for detection of nerve agents by strong hydrogen-bonding interaction. The Analyst, 135(2), 368-374. doi:10.1039/b920266h
Costero, A. M., Gil, S., Parra, M., Mancini, P. M. E., Martínez-Máñez, R., Sancenón, F., & Royo, S. (2008). Chromogenic detection of nerve agent mimics. Chemical Communications, (45), 6002. doi:10.1039/b811247a
Costero, A. M., Parra, M., Gil, S., Gotor, R., Mancini, P. M. E., Martínez-Máñez, R., … Royo, S. (2010). Chromo-Fluorogenic Detection of Nerve-Agent Mimics Using Triggered Cyclization Reactions in Push-Pull Dyes. Chemistry - An Asian Journal, 5(7), 1573-1585. doi:10.1002/asia.201000058
Knapton, D., Burnworth, M., Rowan, S. J., & Weder, C. (2006). Fluorescent Organometallic Sensors for the Detection of Chemical-Warfare-Agent Mimics. Angewandte Chemie International Edition, 45(35), 5825-5829. doi:10.1002/anie.200601634
Climent, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., Maquieira, A., & Amorós, P. (2010). Controlled Delivery Using Oligonucleotide-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 49(40), 7281-7283. doi:10.1002/anie.201001847
Bernardos, A., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Amorós, P. (2009). Enzyme-Responsive Controlled Release Using Mesoporous Silica Supports Capped with Lactose. Angewandte Chemie International Edition, 48(32), 5884-5887. doi:10.1002/anie.200900880
Bernardos, A., Mondragón, L., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Amorós, P. (2010). Enzyme-Responsive Intracellular Controlled Release Using Nanometric Silica Mesoporous Supports Capped with «Saccharides». ACS Nano, 4(11), 6353-6368. doi:10.1021/nn101499d
Climent, E., Bernardos, A., Martínez-Máñez, R., Maquieira, A., Marcos, M. D., Pastor-Navarro, N., … Amorós, P. (2009). Controlled Delivery Systems Using Antibody-Capped Mesoporous Nanocontainers. Journal of the American Chemical Society, 131(39), 14075-14080. doi:10.1021/ja904456d
Climent, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., Rurack, K., & Amorós, P. (2009). The Determination of Methylmercury in Real Samples Using Organically Capped Mesoporous Inorganic Materials Capable of Signal Amplification. Angewandte Chemie International Edition, 48(45), 8519-8522. doi:10.1002/anie.200904243
Cabrera, S., El Haskouri, J., Guillem, C., Latorre, J., Beltrán-Porter, A., Beltrán-Porter, D., … Amorós *, P. (2000). Generalised syntheses of ordered mesoporous oxides: the atrane route. Solid State Sciences, 2(4), 405-420. doi:10.1016/s1293-2558(00)00152-7
Felix, F., Ferguson, J., Guedel, H. U., & Ludi, A. (1980). The electronic spectrum of tris(2,2’-bipyridine)ruthenium(2+). Journal of the American Chemical Society, 102(12), 4096-4102. doi:10.1021/ja00532a019
Lytle, F. E., & Hercules, D. M. (1969). Luminescence of tris(2,2’-bipyridine)ruthenium(II) dichloride. Journal of the American Chemical Society, 91(2), 253-257. doi:10.1021/ja01030a006
[-]