- -

DNA microarrays on silicon surfaces through thiol-ene chemistry

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

DNA microarrays on silicon surfaces through thiol-ene chemistry

Show full item record

Escorihuela Fuentes, J.; Bañuls Polo, MJ.; Puchades Pla, R.; Maquieira Catala, Á. (2012). DNA microarrays on silicon surfaces through thiol-ene chemistry. Chemical Communications. 48:2116-2118. https://doi.org/10.1039/c2cc17321b

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/31970

Files in this item

Item Metadata

Title: DNA microarrays on silicon surfaces through thiol-ene chemistry
Author: Escorihuela Fuentes, Jorge Bañuls Polo, Mª José Puchades Pla, Rosa Maquieira Catala, Ángel
UPV Unit: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic
Issued date:
Abstract:
The potential of thiol-ene chemistry as a selective strategy to functionalize silicon materials for DNA microarraying is demonstrated and applied to discriminate genetic variations. © 2012 The Royal Society of Chemistry.
Subjects: Biotin , Silicon , Streptavidin , Thiol derivative , Article , Biotinylation , DNA microarray , Genetic variability , Mosaic virus , Nucleic acid immobilization , PH , Quantitative analysis , Single nucleotide polymorphism , Base Sequence , DNA Probes , Oligonucleotide Array Sequence Analysis , Sulfhydryl Compounds , Surface Properties
Copyrigths: Cerrado
Source:
Chemical Communications. (issn: 1359-7345 ) (eissn: 1364-548X )
DOI: 10.1039/c2cc17321b
Publisher:
Royal Society of Chemistry
Publisher version: http://dx.doi.org/10.1039/c2cc17321b
Project ID:
info:eu-repo/grantAgreement/MICINN//CTQ2010-15943/ES/ESTUDIO DE NUEVAS VIAS DE DESARROLLO DE BIOMEMS PARA SCREENING MASIVO. DEMOSTRACION DE CONCEPTO COMO HERRAMIENTA DE ANALISIS APLICABLE EN "OMICAS"./
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2010%2F008/ES/AYUDA PARA EL GRUPO SYM-IDM/
Thanks:
This work was supported by the Spanish Ministerio de Ciencia e Innovacion (FEDER-CTQ2010-15943) and Generalitat Valenciana (PROMETEO/2010/008).
Type: Artículo

References

Stevens, M. M. (2005). Exploring and Engineering the Cell Surface Interface. Science, 310(5751), 1135-1138. doi:10.1126/science.1106587

Horlacher, T., & Seeberger, P. H. (2008). Carbohydrate arrays as tools for research and diagnostics. Chemical Society Reviews, 37(7), 1414. doi:10.1039/b708016f

Lovrinovic, M., & Niemeyer, C. M. (2005). DNA Microarrays as Decoding Tools in Combinatorial Chemistry and Chemical Biology. Angewandte Chemie International Edition, 44(21), 3179-3183. doi:10.1002/anie.200500645 [+]
Stevens, M. M. (2005). Exploring and Engineering the Cell Surface Interface. Science, 310(5751), 1135-1138. doi:10.1126/science.1106587

Horlacher, T., & Seeberger, P. H. (2008). Carbohydrate arrays as tools for research and diagnostics. Chemical Society Reviews, 37(7), 1414. doi:10.1039/b708016f

Lovrinovic, M., & Niemeyer, C. M. (2005). DNA Microarrays as Decoding Tools in Combinatorial Chemistry and Chemical Biology. Angewandte Chemie International Edition, 44(21), 3179-3183. doi:10.1002/anie.200500645

Sassolas, A., Leca-Bouvier, B. D., & Blum, L. J. (2008). DNA Biosensors and Microarrays. Chemical Reviews, 108(1), 109-139. doi:10.1021/cr0684467

Schena, M., Shalon, D., Davis, R. W., & Brown, P. O. (1995). Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray. Science, 270(5235), 467-470. doi:10.1126/science.270.5235.467

Liu, S. V. (2000). Debating controversies can enhance creativity. Nature, 403(6770), 592-592. doi:10.1038/35001232

Palchetti, I., & Mascini, M. (s. f.). Electrochemical Adsorption Technique for Immobilization of Single-Stranded Oligonucleotides onto Carbon Screen-Printed Electrodes. Immobilisation of DNA on Chips II, 27-43. doi:10.1007/b135774

Stern, E., Klemic, J. F., Routenberg, D. A., Wyrembak, P. N., Turner-Evans, D. B., Hamilton, A. D., … Reed, M. A. (2007). Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature, 445(7127), 519-522. doi:10.1038/nature05498

Pasquarelli, A. (2008). Biochips: Technologies and applications. Materials Science and Engineering: C, 28(4), 495-508. doi:10.1016/j.msec.2007.06.001

Krupke, R., Malik, S., Weber, H. B., Hampe, O., Kappes, M. M., & v. Löhneysen, H. (2002). Patterning and Visualizing Self-Assembled Monolayers with Low-Energy Electrons. Nano Letters, 2(10), 1161-1164. doi:10.1021/nl025679e

Bañuls, M.-J., González-Pedro, V., Barrios, C. A., Puchades, R., & Maquieira, Á. (2010). Selective chemical modification of silicon nitride/silicon oxide nanostructures to develop label-free biosensors. Biosensors and Bioelectronics, 25(6), 1460-1466. doi:10.1016/j.bios.2009.10.048

Vong, T., ter Maat, J., van Beek, T. A., van Lagen, B., Giesbers, M., van Hest, J. C. M., & Zuilhof, H. (2009). Site-Specific Immobilization of DNA in Glass Microchannels via Photolithography†. Langmuir, 25(24), 13952-13958. doi:10.1021/la901558n

Dondoni, A. (2008). The Emergence of Thiol-Ene Coupling as a Click Process for Materials and Bioorganic Chemistry. Angewandte Chemie International Edition, 47(47), 8995-8997. doi:10.1002/anie.200802516

Hoyle, C. E., & Bowman, C. N. (2010). Thiol-Ene Click Chemistry. Angewandte Chemie International Edition, 49(9), 1540-1573. doi:10.1002/anie.200903924

Chen, X., Gambhir, S. S., & Cheon, J. (2011). Theranostic Nanomedicine. Accounts of Chemical Research, 44(10), 841-841. doi:10.1021/ar200231d

Wendeln, C., Heile, A., Arlinghaus, H. F., & Ravoo, B. J. (2010). Carbohydrate Microarrays by Microcontact Printing. Langmuir, 26(7), 4933-4940. doi:10.1021/la903569v

Campos, M. A. C., Paulusse, J. M. J., & Zuilhof, H. (2010). Functional monolayers on oxide-free silicon surfaces via thiol–ene click chemistry. Chemical Communications, 46(30), 5512. doi:10.1039/c0cc01264e

Ham, H. O., Liu, Z., Lau, K. H. A., Lee, H., & Messersmith, P. B. (2010). Facile DNA Immobilization on Surfaces through a Catecholamine Polymer. Angewandte Chemie International Edition, 50(3), 732-736. doi:10.1002/anie.201005001

Seifert, M., Rinke, M. T., & Galla, H.-J. (2010). Characterization of Streptavidin Binding to Biotinylated, Binary Self-Assembled Thiol Monolayers—Influence of Component Ratio and Solvent. Langmuir, 26(9), 6386-6393. doi:10.1021/la904087s

Gong, P., Harbers, G. M., & Grainger, D. W. (2006). Multi-technique Comparison of Immobilized and Hybridized Oligonucleotide Surface Density on Commercial Amine-Reactive Microarray Slides. Analytical Chemistry, 78(7), 2342-2351. doi:10.1021/ac051812m

Strother, T., Cai, W., Zhao, X., Hamers, R. J., & Smith, L. M. (2000). Synthesis and Characterization of DNA-Modified Silicon (111) Surfaces. Journal of the American Chemical Society, 122(6), 1205-1209. doi:10.1021/ja9936161

Jordan, C. E., Frutos, A. G., Thiel, A. J., & Corn, R. M. (1997). Surface Plasmon Resonance Imaging Measurements of DNA Hybridization Adsorption and Streptavidin/DNA Multilayer Formation at Chemically Modified Gold Surfaces. Analytical Chemistry, 69(24), 4939-4947. doi:10.1021/ac9709763

Pirrung, M. C. (2002). How to Make a DNA Chip. Angewandte Chemie International Edition, 41(8), 1276-1289. doi:10.1002/1521-3773(20020415)41:8<1276::aid-anie1276>3.0.co;2-2

McCarthy, J. J., & Hilfiker, R. (2000). The use of single-nucleotide polymorphism maps in pharmacogenomics. Nature Biotechnology, 18(5), 505-508. doi:10.1038/75360

Twyman, R. (2004). SNP Discovery and Typing Technologies for Pharmacogenomics. Current Topics in Medicinal Chemistry, 4(13), 1421-1429. doi:10.2174/1568026043387656

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record