Mostrar el registro sencillo del ítem
dc.contributor.author | Valero Vidal, Carlos | es_ES |
dc.contributor.author | Igual Muñoz, Anna Neus | es_ES |
dc.contributor.author | Olsson, C.O.A. | es_ES |
dc.contributor.author | Mischler, Stefano | es_ES |
dc.date.accessioned | 2013-09-11T07:25:23Z | |
dc.date.available | 2013-09-11T07:25:23Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 0013-4651 | |
dc.identifier.uri | http://hdl.handle.net/10251/31971 | |
dc.description.abstract | Kinetics of passive film growth on a CoCrMo biomedical alloy have been studied using the Electrochemical Quartz Crystal Microbalance technique (EQCM) in phosphate buffer solution at room temperature and 37◦C. CoCrMo layers were deposited on the quartz crystals by physical vapor deposition (PVD) reaching a dense and compact deposition film with fine-grain structure. EQCM measurements were performed under potentiodynamic and potentiostatic conditions (at applied passive and transpassive potentials). Furthermore, ex-situ X-ray Photoelectron Spectroscopy (XPS) analysis of the each tested sample was performed at the end of the electrochemical test. The use ofEQCMallows distinguishing between electrochemical oxidation, passive and transpassive dissolution and passive film growth. In the passive domain the passive film thickness stabilizes within 200 to 400 s after an initial fast growth. The increase in current at the onset of the transpassive domain does not affect the passive dissolution rate. Only at higher potential dissolution rate increases due to the dissolution of Cr(VI), Co(III) and Mo(VI) species. The observed constant mass loss rate at transpassive potentials indicates that the passive film at these potentials is cracked or porous. Increasing temperature accelerates themass loss through the oxide/electrolyte interface enhancing the passive and transpassive dissolution and increasing the thickness of the oxide film | es_ES |
dc.description.sponsorship | We wish to express our gratitude to the Spanish Government, "Ministerio de Educacion" for the economic support and the post-graduate grant (Ref.AP2007-01243) and "Ministerio de Ciencia e Innovacion" for the financial support (Ref.MAT2011-22481), the assistance of N. Xanthopoulos with the XPS measurements and P. Mettraux with the PVD deposits and assistance with the scanning electron micrographs. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Electrochemical Society | es_ES |
dc.relation.ispartof | Journal of The Electrochemical Society | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Electrochemical quartz crystal microbalance | es_ES |
dc.subject | CoCrMo biomedical alloys | es_ES |
dc.subject | proteins | es_ES |
dc.subject | adsorption | es_ES |
dc.subject | passivation | es_ES |
dc.subject.classification | INGENIERIA QUIMICA | es_ES |
dc.title | Passivation of a CoCrMo PVD Alloy with Biomedical Composition under Simulated Physiological Conditions Studied by EQCM and XPS | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1149/2.090205jes | |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//AP2007-01243/ES/AP2007-01243/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MAT2011-22481/ES/ESTUDIO DE PROPIEDADES FISICO-QUIMICAS DE INTERFASE BIOMATERIAL/SUERO FISIOLOGICO PARA DETERMINAR MECANISMOS DE DEGRADACION TRIBO-ELECTROQUIMICOS DE ALEACIONES BIOMEDICAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.description.bibliographicCitation | Valero Vidal, C.; Igual Muñoz, AN.; Olsson, C.; Mischler, S. (2012). Passivation of a CoCrMo PVD Alloy with Biomedical Composition under Simulated Physiological Conditions Studied by EQCM and XPS. Journal of The Electrochemical Society. 159(5):233-243. https://doi.org/10.1149/2.090205jes | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1149/2.090205jes | es_ES |
dc.description.upvformatpinicio | 233 | es_ES |
dc.description.upvformatpfin | 243 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 159 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.senia | 235348 | |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Katti, K. S. (2004). Biomaterials in total joint replacement. Colloids and Surfaces B: Biointerfaces, 39(3), 133-142. doi:10.1016/j.colsurfb.2003.12.002 | es_ES |
dc.description.references | Okazaki, Y. (2002). Effect of friction on anodic polarization properties of metallic biomaterials. Biomaterials, 23(9), 2071-2077. doi:10.1016/s0142-9612(01)00337-4 | es_ES |
dc.description.references | Virtanen, S., Milošev, I., Gomez-Barrena, E., Trebše, R., Salo, J., & Konttinen, Y. T. (2008). Special modes of corrosion under physiological and simulated physiological conditions. Acta Biomaterialia, 4(3), 468-476. doi:10.1016/j.actbio.2007.12.003 | es_ES |
dc.description.references | Milošev, I., & Strehblow, H.-H. (2003). The composition of the surface passive film formed on CoCrMo alloy in simulated physiological solution. Electrochimica Acta, 48(19), 2767-2774. doi:10.1016/s0013-4686(03)00396-7 | es_ES |
dc.description.references | Hodgson, A. W. E., Kurz, S., Virtanen, S., Fervel, V., Olsson, C.-O. A., & Mischler, S. (2004). Passive and transpassive behaviour of CoCrMo in simulated biological solutions. Electrochimica Acta, 49(13), 2167-2178. doi:10.1016/j.electacta.2003.12.043 | es_ES |
dc.description.references | Muñoz, A. I., & Mischler, S. (2007). Interactive Effects of Albumin and Phosphate Ions on the Corrosion of CoCrMo Implant Alloy. Journal of The Electrochemical Society, 154(10), C562. doi:10.1149/1.2764238 | es_ES |
dc.description.references | Hanawa, T., Hiromoto, S., & Asami, K. (2001). Characterization of the surface oxide film of a Co–Cr–Mo alloy after being located in quasi-biological environments using XPS. Applied Surface Science, 183(1-2), 68-75. doi:10.1016/s0169-4332(01)00551-7 | es_ES |
dc.description.references | Hanawa, T. (2004). Metal ion release from metal implants. Materials Science and Engineering: C, 24(6-8), 745-752. doi:10.1016/j.msec.2004.08.018 | es_ES |
dc.description.references | Fleury, C., Petit, A., Mwale, F., Antoniou, J., Zukor, D. J., Tabrizian, M., & Huk, O. L. (2006). Effect of cobalt and chromium ions on human MG-63 osteoblasts in vitro: Morphology, cytotoxicity, and oxidative stress. Biomaterials, 27(18), 3351-3360. doi:10.1016/j.biomaterials.2006.01.035 | es_ES |
dc.description.references | Germain, M. A., Hatton, A., Williams, S., Matthews, J. B., Stone, M. H., Fisher, J., & Ingham, E. (2003). Comparison of the cytotoxicity of clinically relevant cobalt–chromium and alumina ceramic wear particles in vitro. Biomaterials, 24(3), 469-479. doi:10.1016/s0142-9612(02)00360-5 | es_ES |
dc.description.references | Massè, A., Bosetti, M., Buratti, C., Visentin, O., Bergadano, D., & Cannas, M. (2003). Ion release and chromosomal damage from total hip prostheses with metal-on-metal articulation. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 67B(2), 750-757. doi:10.1002/jbm.b.10070 | es_ES |
dc.description.references | Dumbleton, J. H., & Manley, M. T. (2005). Metal-on-Metal Total Hip Replacement. The Journal of Arthroplasty, 20(2), 174-188. doi:10.1016/j.arth.2004.08.011 | es_ES |
dc.description.references | Milo?ev, I., & Strehblow, H.-H. (2000). The behavior of stainless steels in physiological solution containing complexing agent studied by X-ray photoelectron spectroscopy. Journal of Biomedical Materials Research, 52(2), 404-412. doi:10.1002/1097-4636(200011)52:2<404::aid-jbm22>3.0.co;2-z | es_ES |
dc.description.references | Fukuzaki, S., Urano, H., & Nagata, K. (1996). Adsorption of bovine serum albumin onto metal oxide surfaces. Journal of Fermentation and Bioengineering, 81(2), 163-167. doi:10.1016/0922-338x(96)87596-9 | es_ES |
dc.description.references | Malmsten, M. (1998). Formation of Adsorbed Protein Layers. Journal of Colloid and Interface Science, 207(2), 186-199. doi:10.1006/jcis.1998.5763 | es_ES |
dc.description.references | Khan, M. A., Williams, R. L., & Williams, D. F. (1996). In-vitro corrosion and wear of titanium alloys in the biological environment. Biomaterials, 17(22), 2117-2126. doi:10.1016/0142-9612(96)00029-4 | es_ES |
dc.description.references | Kanagaraja, S. (1996). Platelet binding and protein adsorption to titanium and gold after short time exposure to heparinized plasma and whole blood. Biomaterials, 17(23), 2225-2232. doi:10.1016/0142-9612(95)00311-8 | es_ES |
dc.description.references | Yan, Y., Neville, A., & Dowson, D. (2007). Biotribocorrosion of CoCrMo orthopaedic implant materials—Assessing the formation and effect of the biofilm. Tribology International, 40(10-12), 1492-1499. doi:10.1016/j.triboint.2007.02.019 | es_ES |
dc.description.references | Hallab, N. J., Mikecz, K., Vermes, C., Skipor, A., & Jacobs, J. J. (2001). Molecular and Cellular Biochemistry, 222(1/2), 127-136. doi:10.1023/a:1017979710992 | es_ES |
dc.description.references | Kocijan, A., Milošev, I., Merl, D. K., & Pihlar, B. (2004). Electrochemical Study of Co-Based Alloys in Simulated Physiological Solution. Journal of Applied Electrochemistry, 34(5), 517-524. doi:10.1023/b:jach.0000021868.10122.96 | es_ES |
dc.description.references | Valero Vidal, C., & Igual Muñoz, A. (2008). Electrochemical characterisation of biomedical alloys for surgical implants in simulated body fluids. Corrosion Science, 50(7), 1954-1961. doi:10.1016/j.corsci.2008.04.002 | es_ES |
dc.description.references | Vidal, C. V., & Muñoz, A. I. (2009). Effect of thermal treatment and applied potential on the electrochemical behaviour of CoCrMo biomedical alloy. Electrochimica Acta, 54(6), 1798-1809. doi:10.1016/j.electacta.2008.10.018 | es_ES |
dc.description.references | Valero Vidal, C., & Igual Muñoz, A. (2010). Study of the adsorption process of bovine serum albumin on passivated surfaces of CoCrMo biomedical alloy. Electrochimica Acta, 55(28), 8445-8452. doi:10.1016/j.electacta.2010.07.028 | es_ES |
dc.description.references | Bettini, E., Eriksson, T., Boström, M., Leygraf, C., & Pan, J. (2011). Influence of metal carbides on dissolution behavior of biomedical CoCrMo alloy: SEM, TEM and AFM studies. Electrochimica Acta, 56(25), 9413-9419. doi:10.1016/j.electacta.2011.08.028 | es_ES |
dc.description.references | Buttry, D. A., & Ward, M. D. (1992). Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance. Chemical Reviews, 92(6), 1355-1379. doi:10.1021/cr00014a006 | es_ES |
dc.description.references | Daujotis, V., Jasaitis, D., & Raudonis, R. (1997). The mechanism of electroreduction of silver cyanide complexes in aqueous electrolytes—I. Time-resolved EQCM study. Electrochimica Acta, 42(9), 1337-1344. doi:10.1016/s0013-4686(96)00310-6 | es_ES |
dc.description.references | Sauerbrey, G. (1959). Verwendung von Schwingquarzen zur W�gung d�nner Schichten und zur Mikrow�gung. Zeitschrift f�r Physik, 155(2), 206-222. doi:10.1007/bf01337937 | es_ES |
dc.description.references | Galliano, F., Olsson, C.-O. A., & Landolt, D. (2003). Flow Cell for EQCM Adsorption Studies. Journal of The Electrochemical Society, 150(11), B504. doi:10.1149/1.1613293 | es_ES |
dc.description.references | Olsson, C.-O. A., & Landolt, D. (2003). Anodisation of a Nb–Zr alloy. Electrochimica Acta, 48(27), 3999-4011. doi:10.1016/s0013-4686(03)00540-1 | es_ES |
dc.description.references | Vergé, M.-G., Olsson, C.-O. A., & Landolt, D. (2004). Anodic oxide growth on tungsten studied by EQCM, EIS and AES. Corrosion Science, 46(10), 2583-2600. doi:10.1016/j.corsci.2004.02.005 | es_ES |
dc.description.references | Olsson, C.-O. A., Vergé, M.-G., & Landolt, D. (2004). EQCM Study of Anodic Film Growth on Valve Metals. Journal of The Electrochemical Society, 151(12), B652. doi:10.1149/1.1819896 | es_ES |
dc.description.references | Schmutz, P., & Landolt, D. (1999). Electrochemical quartz crystal microbalance study of the transient response of passive Fe25Cr alloy. Electrochimica Acta, 45(6), 899-911. doi:10.1016/s0013-4686(99)00293-5 | es_ES |
dc.description.references | Schmutz, P., & Landolt, D. (1999). In-situ microgravimetric studies of passive alloys: potential sweep and potential step experiments with Fe–25Cr and Fe–17Cr–33Mo in acid and alkaline solution. Corrosion Science, 41(11), 2143-2163. doi:10.1016/s0010-938x(99)00038-4 | es_ES |
dc.description.references | Hamm, D., Ogle, K., Olsson, C.-O. ., Weber, S., & Landolt, D. (2002). Passivation of Fe–Cr alloys studied with ICP-AES and EQCM. Corrosion Science, 44(7), 1443-1456. doi:10.1016/s0010-938x(01)00147-0 | es_ES |
dc.description.references | Olsson, C.-O. ., & Landolt, D. (2003). Passive films on stainless steels—chemistry, structure and growth. Electrochimica Acta, 48(9), 1093-1104. doi:10.1016/s0013-4686(02)00841-1 | es_ES |
dc.description.references | Olsson, C.-O. A., & Landolt, D. (2001). Film Growth during Anodic Polarization in the Passive Region on 304 Stainless Steels with Cr, Mo, or W Additions Studied with EQCM and XPS. Journal of The Electrochemical Society, 148(11), B438. doi:10.1149/1.1404969 | es_ES |
dc.description.references | Olsson, C.-O. A., Hamm, D., & Landolt, D. (2000). Electrochemical Quartz Crystal Microbalance Studies of the Passive Behavior of Cr in a Sulfuric Acid Solution. Journal of The Electrochemical Society, 147(7), 2563. doi:10.1149/1.1393569 | es_ES |
dc.description.references | Payet, V., Brunner, S., Galtayries, A., Frateur, I., & Marcus, P. (2008). Cleaning of albumin-contaminated Ti and Cr surfaces: an XPS and QCM study. Surface and Interface Analysis, 40(3-4), 215-219. doi:10.1002/sia.2655 | es_ES |
dc.description.references | Herranen, M., & Carlsson, J.-O. (2001). An electrochemical quartz crystal microbalance and in situ SFM study of Ti in sulphuric acid. Corrosion Science, 43(2), 365-379. doi:10.1016/s0010-938x(00)00079-2 | es_ES |
dc.description.references | Höök, F., Vörös, J., Rodahl, M., Kurrat, R., Böni, P., Ramsden, J. ., … Kasemo, B. (2002). A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation. Colloids and Surfaces B: Biointerfaces, 24(2), 155-170. doi:10.1016/s0927-7765(01)00236-3 | es_ES |
dc.description.references | Frateur, I., Lecoeur, J., Zanna, S., Olsson, C.-O. A., Landolt, D., & Marcus, P. (2007). Adsorption of BSA on passivated chromium studied by a flow-cell EQCM and XPS. Electrochimica Acta, 52(27), 7660-7669. doi:10.1016/j.electacta.2006.12.060 | es_ES |
dc.description.references | Ithurbide, A., Frateur, I., Galtayries, A., & Marcus, P. (2007). XPS and flow-cell EQCM study of albumin adsorption on passivated chromium surfaces: Influence of potential and pH. Electrochimica Acta, 53(3), 1336-1345. doi:10.1016/j.electacta.2007.04.109 | es_ES |
dc.description.references | Muñoz A. Igual Mischler S. , Inter-laboratory study on electrochemical methods for the characterisation of CoCrMo biomedical alloys in simulated body fluids, European Federation of Corrosion by Maney Publishing on behalf of The Institute of Materials, Minerals & Mining, UK (2011). | es_ES |
dc.description.references | Bruckenstein, S., & Shay, M. (1985). Experimental aspects of use of the quartz crystal microbalance in solution. Electrochimica Acta, 30(10), 1295-1300. doi:10.1016/0013-4686(85)85005-2 | es_ES |
dc.description.references | Kern, P., & Landolt, D. (2000). Design and Characterization of a Rotating Electrochemical Quartz-Crystal-Microbalance Electrode. Journal of The Electrochemical Society, 147(1), 318. doi:10.1149/1.1393193 | es_ES |
dc.description.references | Kelly, J. J. (1998). Effect of Current Distribution on Quartz Crystal Microbalance Measurements. Journal of The Electrochemical Society, 145(2), 492. doi:10.1149/1.1838291 | es_ES |
dc.description.references | Olsson, C.-O. A., & Landolt, D. (2004). Atmospheric oxidation of a Nb–Zr alloy studied with XPS. Corrosion Science, 46(1), 213-224. doi:10.1016/s0010-938x(03)00139-2 | es_ES |
dc.description.references | Brox B. Olefjord I. , in Proceedings of Stainless Steel 1984, p. 134, The Institute of Metals, London (1985). | es_ES |
dc.description.references | Wegrelius L. Olefjord I. , in Proceedings of 12th International Corrosion Congress, 5B, p3887, NACE, Houston, TX (1993). | es_ES |
dc.description.references | Savitzky, A., & Golay, M. J. E. (1964). Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry, 36(8), 1627-1639. doi:10.1021/ac60214a047 | es_ES |
dc.description.references | Ouerd, A., Alemany-Dumont, C., Normand, B., & Szunerits, S. (2008). Reactivity of CoCrMo alloy in physiological medium: Electrochemical characterization of the metal/protein interface. Electrochimica Acta, 53(13), 4461-4469. doi:10.1016/j.electacta.2008.01.025 | es_ES |
dc.description.references | Tanuma, S., Powell, C. J., & Penn, D. R. (1994). Calculations of electron inelastic mean free paths. V. Data for 14 organic compounds over the 50-2000 eV range. Surface and Interface Analysis, 21(3), 165-176. doi:10.1002/sia.740210302 | es_ES |
dc.description.references | Tanuma, S., Powell, C. J., & Penn, D. R. (2003). Calculation of electron inelastic mean free paths (IMFPs) VII. Reliability of the TPP-2M IMFP predictive equation. Surface and Interface Analysis, 35(3), 268-275. doi:10.1002/sia.1526 | es_ES |
dc.description.references | Kocijan, A., Milošev, I., & Pihlar, B. (2004). Cobalt-based alloys for orthopaedic applications studied by electrochemical and XPS analysis. Journal of Materials Science: Materials in Medicine, 15(6), 643-650. doi:10.1023/b:jmsm.0000030204.08616.3d | es_ES |
dc.description.references | Hamm, D., Olsson, C.-O. A., & Landolt, D. (2002). Effect of chromium content and sweep rate on passive film growth on iron–chromium alloys studied by EQCM and XPS. Corrosion Science, 44(5), 1009-1025. doi:10.1016/s0010-938x(01)00126-3 | es_ES |
dc.description.references | Schmuki, P. (1996). Transpassive Dissolution of Cr and Sputter-Deposited Cr Oxides Studied by In Situ X-Ray Near-Edge Spectroscopy. Journal of The Electrochemical Society, 143(12), 3997. doi:10.1149/1.1837327 | es_ES |
dc.description.references | Valero Vidal, C., Olmo Juan, A., & Igual Muñoz, A. (2010). Adsorption of bovine serum albumin on CoCrMo surface: Effect of temperature and protein concentration. Colloids and Surfaces B: Biointerfaces, 80(1), 1-11. doi:10.1016/j.colsurfb.2010.05.005 | es_ES |