- -

Analysis of genetic control of â-carotene and L-ascorbic acid accumulation from a wild cherry orange-brownish tomato accession

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Analysis of genetic control of â-carotene and L-ascorbic acid accumulation from a wild cherry orange-brownish tomato accession

Show simple item record

Files in this item

dc.contributor.author Adalid Martínez, Ana Maria es_ES
dc.contributor.author Rosello Ripolles, Salvador es_ES
dc.contributor.author Valcárcel Germes, Mercedes es_ES
dc.contributor.author Nuez Viñals, Fernando es_ES
dc.date.accessioned 2013-10-31T13:17:07Z
dc.date.issued 2011
dc.identifier.issn 0014-2336
dc.identifier.uri http://hdl.handle.net/10251/33168
dc.description.abstract [EN] An additive-dominance, additive 9 additive (ADAA) and genotype 9 environment interaction mix model was used to study the genetic control of beta-carotene and L-ascorbic acid in six basic generations (P-1, P-2, F-1, F-2, BC1P1 and BC1P2) of tomato derived from the cross CDP8779 accession (Solanum lycopersicum L.) x CDP4777 accession (S. lycopersicum var. cerasiforme). The study was performed in two environments: (1) open field; (2) protected environment, consisting of hydroponic cultivation in a glasshouse. The results indicate that beta-carotene accumulation was mainly additive (32.2% of the genetic component), with a small dominant component (4.2%) and an important additive x environment interaction contribution (63.6%). In target environments with moderate to high temperatures and no limiting radiation, this the expression additive x environment interaction could substantially enhance the beta-carotene content. This trait showed also a high narrow-sense heritability (h(2) = 0.62). Ascorbic acid accumulation was also mainly additive (61.7% of the genetic component), with a minor additive epistatic component (21.5%). This epistatic effect caused a negative heterosis that reduced the positive main additive effect. Nevertheless, in the described target environments, the additive 9 environment interaction contribution (16.8%) may enhance the ascorbic acid content and compensate for the negative heterosis effect. The total narrow-sense heritability of this trait can be considered useful (h(2) = 0.52). In conclusion, the CDP4777 accession is a very interesting donor parent for the joint improvement of beta-carotene (without diminishing lycopene content) and ascorbic acid content in commercial nutraceutical tomato breeding programmes; the F-1 hybrids derived from this accession showed nearly 450% of the commonly reported average beta-carotene content and close to 130% of the ascorbic acid content of the female parent. es_ES
dc.description.sponsorship This research was financed by the Spanish Ministry of Science and Innovation (MICINN) (project AGL2005-08083-C03-01). The authors thank Dr. Luis Mejia and the Universidad de San Carlos of Guatemala for providing the CPD4777 accession, among others. The authors thank Professor Jun Zhu, director of the Bioinformatics Institute, Zhejiang University, China, for his comments and for kindly providing the software used in the data analyses.
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation MICINN/AGL2005-08083-C03-01 es_ES
dc.relation.ispartof Euphytica es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Additive es_ES
dc.subject Solanum lycopersicum var. cerasiforme es_ES
dc.subject Dominance es_ES
dc.subject Epistasis es_ES
dc.subject Source of variability es_ES
dc.subject Breeding programmes es_ES
dc.subject.classification GENETICA es_ES
dc.title Analysis of genetic control of â-carotene and L-ascorbic acid accumulation from a wild cherry orange-brownish tomato accession es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1007/s10681-011-0584-x
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana es_ES
dc.description.bibliographicCitation Adalid Martinez, AM.; Rosello Ripolles, S.; Valcárcel Germes, M.; Nuez Viñals, F. (2011). Analysis of genetic control of â-carotene and L-ascorbic acid accumulation from a wild cherry orange-brownish tomato accession. Euphytica. 184(2):251-263. doi:10.1007/s10681-011-0584-x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s10681-011-0584-x es_ES
dc.description.upvformatpinicio 251 es_ES
dc.description.upvformatpfin 263 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 184 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 206606
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.relation.references Adalid AM, Roselló S, Nuez F (2010) Evaluation and selection of accessions of Solanum section Lycopersicon for content of bioactive components. J Food Compos Anal 23:613–618 es_ES
dc.relation.references Bhatt RP, Biswas VR, Pandey HK, Verma GS, Kumar N (1998) Heterosis for vitamin C in tomato (Lycopersicon esculentum). Indian J Agric Sci 68:176–178 es_ES
dc.relation.references Bhatt RP, Biswas VR, Kumar N (2001) Heterosis, combining ability and genetics for vitamin C, total soluble solids and yield in tomato (Lycopersicon esculentum) at 1700 m altitude. J Agric Sci 137:71–75 es_ES
dc.relation.references Brown GB (1954) The ascorbic acid content of tomatoes as related to illumination. J Am Soc Hortic Sci 65:342–348 es_ES
dc.relation.references Byers T, Guerrero N (1995) Epidemiologic evidence for vitamin C and vitamin E in cancer prevention. Am J Clin Nutr 62:1385S–1392S es_ES
dc.relation.references Causse M, Buret M, Robini K, Verschave P (2003) Inheritance of nutritional and sensory quality traits in fresh market tomato and relation to consumer preferences. J Food Sci 68:2342–2350 es_ES
dc.relation.references Chalukova M (1988) Carotenoid composition of the fruits of hybrids between Lycopersicon esculentum and some wild species of the genus Lycopersicon, IV. Progenies of lycopene and β-carotene BC1P1 hybrids of L. chmielewskii. Genet Breed 21:49–57 es_ES
dc.relation.references Galiana-Balaguer L, Roselló S, Herrero-Martínez JM, Maquieira A, Nuez F (2001) Determination of l-ascorbic acid in Lycopersicon fruits by capillary zone electrophoresis. Anal Biochem 296:218–224 es_ES
dc.relation.references Gould WA (1992) Tomato production processing and technology. CTI Publications, Baltimore es_ES
dc.relation.references Green MA, Fry SC (2005) Vitamin C degradation in plant cells via enzymatic hydrolysis of 4-O-oxalyl-l-threonate. Nature 433:83–87 es_ES
dc.relation.references Hamauzu Y, Chachin K, Ueda Y (1998) Effect of postharvest storage temperature on the conversion of 14C-mevalonic acid to carotenes in tomato fruit. J Jpn Soc Hortic Sci 67:549–555 es_ES
dc.relation.references Hanson PM, Yang RY, Wu J, Chen JT, Ledesma D, Tsou S, Lee T (2004) Variation for antioxidant activity and antioxidants in tomato. J Am Soc Hortic Sci 129:704–711 es_ES
dc.relation.references Holden JM, Eldridge AL, Beecher GR, Buzzard IM, Bhagwat S, Davis CS, Douglass LW, Gebhardt S, Haytowitz D, Schakel S (1999) Carotenoid content of US foods: an update of the database. J Food Compos Anal 12:169–196 es_ES
dc.relation.references Horemans N, Foyer CH, Asard H (2000) Transport and action of ascorbate at the plant plasma membrane. Trends Plant Sci 5:263–267 es_ES
dc.relation.references Isaacson T, Ronen G, Zamir D, Hirschberg J (2002) Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of β-carotene and xanthophylls in plants. Plant Cell 14:333–342 es_ES
dc.relation.references Lenucci MS, Caccioppola A, Durante M, Serrone L, Piro G, Dalessandro G (2007) Carotenoids content in ripe raw and processed (sauce) berries of high pigment tomato hybrids. Acta Hortic 758:173–179 es_ES
dc.relation.references Liptay A, Papadopoulos AP, Bryan HH, Gull D (1986) Ascorbic acid levels in tomato (Lycopersicon esculentum Mill.) at low temperatures. Agric Biol Chem 50:3185–3187 es_ES
dc.relation.references Lopez-Andreu FJ, Lamela A, Esteban RM, Collado GJ (1986) Evolution of quality parameters in the maturation stage of tomato fruits. Acta Hortic 191:387–394 es_ES
dc.relation.references Lynch M, Walsh B (1998) Analysis of quantitative traits. Sinauer Assoc Sunderland es_ES
dc.relation.references Manuelyan H, Yordanov M, Yordanova Z, Illeva Z (1975) Studies on β-carotene and lycopene content in the fruits of Lycopersicon esculentum Mill, × L. chilense Dun. hybrids. Qual Plant Plant Foods Hum Nutr 25:205–210 es_ES
dc.relation.references Marchioli R, Schweiger C, Levantesi G, Tavazzi L, Valagussa F (2001) Antioxidant vitamins and prevention of cardiovascular disease: epidemiological and clinical trial data. Lipids 36:S53–S63 es_ES
dc.relation.references McCarty JC, Jenkins JN, Jixiang W (2004a) Primitive accession derived germplasm by cultivar crosses as sources for cotton improvement: I. Phenotypic values and variance components. Crop Sci 44:1226–1230 es_ES
dc.relation.references McCarty JC, Jenkins JN, Jixiang W (2004b) Primitive accession derived germplasm by cultivar crosses as sources for cotton improvement: II. Genetic effects and genotypic values. Crop Sci 44:1231–1235 es_ES
dc.relation.references McCarty JC, Jixiang W, Jenkins JN (2008) Genetic association of cotton yield with its components traits in derived primitive accessions crossed by elite upland cultivars using the conditional ADAA genetic model. Euphytica 161:337–352 es_ES
dc.relation.references McCollum JP (1954) Effects of light on the formation of carotenoids in tomato fruits. J Food Sci 19:182–189 es_ES
dc.relation.references Miller RG (1974) The jackknife: a review. Biometrika 61:1–15 es_ES
dc.relation.references O’ Toole P, Lombard M (1996) Vitamin C and gastric cancer: supplements for some or fruit for all. Gut 39:345–347 es_ES
dc.relation.references Rego ER, Finger FL, Casali VWD, Cardos AA (1999) Inheritance of fruit color and pigment changes in a yellow tomato (Lycopersicon esculentum Mill.) mutant. Genet Mol Biol 22:101–104 es_ES
dc.relation.references Rick CM (1956) Genetic and systematic studies on accessions of Lycopersicon from the Galapagos islands. Am J Bot 43:687–696 es_ES
dc.relation.references Ronen G, Cohen M, Zamir D, Hirschberg J (1999) Regulation of carotenoid biosynthesis during tomato fruit development: expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutant delta. Plant J 17:341–351 es_ES
dc.relation.references Ronen G, Carmel-Goren L, Zamir D, Hirschberg J (2000) An alternative pathway to β-carotene formation in plant chromoplasts discovered by map-based cloning of beta and old-gold color mutations in tomato. Proc Natl Acad Sci USA 97:11102–11107 es_ES
dc.relation.references Rosello S, Adalid AM, Cornejo-Cebolla J, Nuez F (2011) Evaluation of the genotype, environment and their interaction on carotenoid and ascorbic acid accumulation in tomato germplasm. J Sci Food Agric 91:1014–1021 es_ES
dc.relation.references Ross DA (1998) Vitamin A and public health: challenges for the next decade. Proc Nutr Soc 57:159–165 es_ES
dc.relation.references Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53:1305–1319 es_ES
dc.relation.references Smirnoff N, Conklin PL, Loewus FA (2001) Biosynthesis of ascorbic acid in plants: a renaissance. Annu Rev Plant Physiol Plant Mol Biol 52:437–467 es_ES
dc.relation.references Stevens MA, Rick CM (1986) Genetics and breeding: fruit quality. In: Athernon JG, Rudich J (eds) The tomato crop. A scientific basis for improvement. Chapman and Hall, London es_ES
dc.relation.references Stevens R, Buret M, Duffe P, Garchery C, Baldet P, Rothan C, Causse M (2007) Candidate genes and quantitative trait loci affecting fruit ascorbic acid content in three tomato populations. Plant Physiol 143:1943–1953 es_ES
dc.relation.references Stommel JR, Haynes KG (1994) Inheritance of beta carotene content in the wild tomato species Lycopersicon cheesmanii. J Hered 85:401–404 es_ES
dc.relation.references Stommel JR, Abbot JA, Saftner RA (2005) USDA 02L1058 and 02L1059: cherry tomato breeding lines with high fruit β-carotene content. HortScience 40:1569–1570 es_ES
dc.relation.references Tee ES (1992) Carotenoids and retinoids in human nutrition. Crit Rev Food Sci Nutr 31:103–163 es_ES
dc.relation.references Tomes ML, Quackenbush FW, McQuistan M (1954) Modification and dominance of the gene governing formation of high concentrations of beta-carotene in the tomato. Genetics 39:810–817 es_ES
dc.relation.references Valpuesta V, Botella MA (2004) Biosynthesis of l-ascorbic acid in plants: new pathways for an old antioxidant. Trends Plant Sci 9:573–577 es_ES
dc.relation.references Xu ZC, Zhu J (1999) An approach for predicting heterosis based on an additive, dominance and additive × additive model with environment interaction. Heredity 82:510–517 es_ES
dc.relation.references Yan XF, Xu SY, Xu YH, Zhu J (1998) Genetic investigation of contributions of embryo and endosperm genes to malt Kolbach index, alpha-amylase activity and wort nitrogen content in barley. Theor Appl Genet 96:709–715 es_ES
dc.relation.references Zhang Y, Stommel JR (2000) RAPD and AFLP tagging and mapping of Beta (B) and Beta modifier (Mo B ), two genes which influence β-carotene accumulation in fruit of tomato (Lycopersicon esculentum Mill.). Theor Appl Genet 100:368–375 es_ES
dc.relation.references Zhu J (1989) Estimation of genetic variance components in the general mixed models. PhD thesis. North Carolina State University, Raleigh es_ES
dc.relation.references Zhu J (1992) Mixel model approaches for estimating genetic variances and covariances. J Biomath 7:1–11 es_ES
dc.relation.references Zhu J, Weir BS (1996) Diallel analysis for sex-linked and maternal effects. Theor Appl Genet 92:1–9 es_ES


This item appears in the following Collection(s)

Show simple item record