Mostrar el registro sencillo del ítem
dc.contributor.author | Fita, Ana | es_ES |
dc.contributor.author | Nuez Viñals, Fernando | es_ES |
dc.contributor.author | Picó Sirvent, María Belén | es_ES |
dc.date.accessioned | 2013-10-31T13:22:24Z | |
dc.date.issued | 2011 | |
dc.identifier.issn | 0014-2336 | |
dc.identifier.uri | http://hdl.handle.net/10251/33169 | |
dc.description.abstract | Breeding for more phosphorus (P)-efficient crops is one strategy to reduce the use of P fertilizers, thus mitigating the environmental and economic impacts of agriculture. Variation in root architecture and the response to P deficiency were studied in C. melo. Forty accessions representing genetic diversity within the species were screened for their root systems in normal and deficient P conditions at the seedling stage. Various parameters of P-uptake and P-use were analyzed in a subset of accessions at 40 days. Significant differences in root architecture were observed, with the taproot systems prevailing among the wild and exotic accessions, and more branched root systems in cultivated stocks. Moreover, differences in the plastic response of roots to P starvation were observed. Variation in different P-use and -uptake traits correlated with the root architecture. Within ssp. melo, the inodorus and flexuosus landraces had larger and more branched roots and more efficient P-uptake, thereby providing a close genepool for breeding. Within ssp. agrestis, conomon and momordica accessions can be sources of interest for the enhancement of variation in root architecture and P-use efficiency into cultivated melons. Therefore, the diversity observed within C. melo species could be useful in breeding P-efficient melon cultivars. © 2011 Springer Science+Business Media B.V. | es_ES |
dc.description.sponsorship | This work was supported by projects GVPRE/2008/131, GEN2006-27773-C2-2, and RF2008-00003-C02-02, funded by the Generalitat Valenciana, the ERA-PG programme, and INIA, respectively. The authors thank the COMAV-UPV, ARS-GRIN-USDA, and IPK-Gatersleben germplasm banks for providing many of the accessions studied in this paper. The authors also would like to thank Dr. Ana Quinones for her help in the mineral analysis. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Euphytica | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | P-uptake efficiency | es_ES |
dc.subject | P-use efficiency | es_ES |
dc.subject | Root length | es_ES |
dc.subject.classification | GENETICA | es_ES |
dc.title | Diversity in root architecture and response to P deficiency in seedlings of Cucumis melo L | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1007/s10681-011-0432-z | |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GVPRE%2F2008%2F131/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//GEN2006-27773-C2-2-E/ES/MELRIP: UNDERSTANDING THE CLIMATERIC VS NON-CLIMATERIC FRUIT RIPENING MECHANISMS IN MELON USING TRANSCRIPTOMIC, METABOLOMIC AND REVERSE GENETIC APPROACHES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//RF2008-00003-C02-02/ES/Recolección, multiplicación, conservación y caracterizacion de variedades emblematicas de melón de Castilla-La Mancha./ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.description.bibliographicCitation | Fita, A.; Nuez Viñals, F.; Picó Sirvent, MB. (2011). Diversity in root architecture and response to P deficiency in seedlings of Cucumis melo L. Euphytica. 181(3):323-339. https://doi.org/10.1007/s10681-011-0432-z | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s10681-011-0432-z | es_ES |
dc.description.upvformatpinicio | 323 | es_ES |
dc.description.upvformatpfin | 339 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 181 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.senia | 41355 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | Al-Ghazi Y, Muller B, Pinloche S, Tranbarger TJ, Nacry P, Rossignol M, Tardieu F, Doumas P (2003) Temporal responses of Arabidopsis root architecture to phosphate starvation: evidence for the involvement of auxin signalling. Plant Cell Environ 26:1053–1066 | es_ES |
dc.description.references | Ao J, Fu J, Tian J, Yan X, Liao H (2010) Genetic variability for root morph-architecture traits and root growth dynamics as related to phosphorus efficiency in soybean. Funct Plant Biol 37:304–312. doi: 10.1071/FP09215 | es_ES |
dc.description.references | Araujo A, Antunes I, Teixeira M (2005) Inheritance of root traits and phosphorus uptake in common bean (Phaseolus vulgaris L.) under limited soil phosphorus supply. Euphytica 145:33–40 | es_ES |
dc.description.references | Bates TR, Lynch JP (2001) Root hairs confer a competitive advantage under low phosphorus availability. Plant Soil 236:243–250 | es_ES |
dc.description.references | Beebe SE, Rojas-Pierce M, Yan XL, Blair MW, Pedraza F, Munoz F, Tohme J, Lynch JP (2006) Quantitative trait loci for root architecture traits correlated with phosphorus acquisition in common bean. Crop Sci 46:413–423. doi: 10.2135/cropsci2005.0226ER | es_ES |
dc.description.references | Chevalier F, Pata M, Nacry P, Doumas P, Rossignol M (2003) Effects of phosphate availability on the root system architecture: large-scale analysis of the natural variation between Arabidopsis accessions. Plant Cell and Environment 26:1839–1850 | es_ES |
dc.description.references | Cichy KA, Snapp SS, Blair MW (2009a) Plant growth habit, root architecture traits and tolerance to low soil phosphorus in an Andean bean population. Euphytica 165:257–268 | es_ES |
dc.description.references | Cichy KA, Blair MW, Mendoza CHG, Snapp SS, Kelly JD (2009b) QTL analysis of root architecture traits and low phosphorus tolerance in an Andean bean population. Crop Sci 49:59–68. doi: 10.2135/cropsci2008.03.0142ER | es_ES |
dc.description.references | Cordell D, Drangert J, White S (2009) The story of phosphorus: global food security and food for thought. Global Environ Change Human Policy Dimens 19:292–305. doi: 10.1016/j.gloenvcha.2008.10.009 | es_ES |
dc.description.references | Deleu W, Esteras C, Roig C, Gonzalez-To M, Fernandez-Silva I, Gonzalez-Ibeas D, Blanca J, Aranda MA, Arus P, Nuez F, Monforte AJ, Pico BM, Garcia-Mas J (2009) A set of EST-SNPs for map saturation and cultivar identification in melon. BMC Plant Biol 9:90. doi: 10.1186/1471-2229-9-90 | es_ES |
dc.description.references | Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15 | es_ES |
dc.description.references | Duan HY, Shi L, Ye XS, Wang YH, Xu FS (2009) Identification of phosphorous efficient germplasm in oilseed rape. J Plant Nutr 32:1148–1163. doi: 10.1080/01904160902943171ER | es_ES |
dc.description.references | Fageria NK, Baligar VC (1997a) Upland rice genotypes evaluation for phosphorus use efficiency. J Plant Nutr 22:499–509 | es_ES |
dc.description.references | Fageria NK, Baligar VC (1997b) Phosphorus-use efficiency by corn genotypes. J Plant Nutr 20:1267–1277 | es_ES |
dc.description.references | Fageria NK, Baligar VC (1999) Phosphorus-use efficiency in wheat genotypes. J Plant Nutr 23:331–340 | es_ES |
dc.description.references | Fageria NK, da Costa JGC (2000) Evaluation of common bean genotypes for phosphorus use efficiency. J Plant Nutr 23:1145–1152 | es_ES |
dc.description.references | Fang ZY, Shao C, Meng YJ, Wu P, Chen M (2009) Phosphate signaling in Arabidopsis and Oryza sativa. Plant Sci 176:170–180. doi: 10.1016/j.plantsci.2008.09.007ER | es_ES |
dc.description.references | FAOSTAT (2010) http://faostat.fao.org/ | es_ES |
dc.description.references | Fernandez-Silva I, Eduardo I, Blanca J, Esteras C, Pico B, Nuez F, Arus P, Garcia-Mas J, Monforte AJ (2008) Bin mapping of genomic and EST-derived SSRs in melon (Cucumis melo L.). Theor Appl Genet 118:139–150 | es_ES |
dc.description.references | Fernandez-Trujillo JP, Pico B, Garcia-Mas J, Alvarez JM, Monforte AJ (2011) Breeding for Fruit Quality in Melon. In: Breeding for fruit quality, first edn. John Wiley and Sons, Inc, pp 261 | es_ES |
dc.description.references | Ferriol M, Pico B, Nuez F (2003) Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theor Appl Genet 107:271–282. doi: 10.1007/s00122-003-1242-zER | es_ES |
dc.description.references | Fita A, Pico B, Nuez F (2006) Implications of the genetics of root structure in melon breeding. J Am Soc Hort Sci 131:372–379 | es_ES |
dc.description.references | Fita A, Pico B, Dias RCS, Nuez E (2008a) Effects of root architecture on response to melon vine decline. J Horticult Sci Biotechnol 83:616–623 | es_ES |
dc.description.references | Fita A, Pico B, Monforte AJ, Nuez F (2008b) Genetics of root system architecture using near-isogenic lines of melon. J Am Soc Hort Sci 133:448–458 | es_ES |
dc.description.references | Gorny AG, Sodkiewicz T (2001) Genetic analysis of the nitrogen and phosphorus utilization efficiencies in mature spring barley plants. Plant Breed 120:129–132 | es_ES |
dc.description.references | Hammond JP, Broadley MR, White PJ (2004) Genetic responses to phosphorus deficiency. Ann Bot 94:323–332. doi: 10.1093/aob/mch156 | es_ES |
dc.description.references | Hammond JP, Broadley MR, White PJ, King GJ, Bowen HC, Hayden R, Meacham MC, Mead A, Overs T, Spracklen WP, Greenwood DJ (2009) Shoot yield drives phosphorus use efficiency in Brassica oleracea and correlates with root architecture traits. J Exp Bot 60:1953–1968. doi: 10.1093/jxb/erp083 | es_ES |
dc.description.references | Hu Y, Ye X, Shi L, Duan H, Xu F (2010) Genotypic differences in root morphology and phosphorus uptake kinetics in Brassica napus under low phosphorus supply. J Plant Nutr 33:889–901. doi: 10.1080/01904161003658239 | es_ES |
dc.description.references | Jeffrey C (1980) A review of the cucurbitaceae. Bot J Linn Soc 81:233–247 | es_ES |
dc.description.references | Krasilnikoff G, Gahoonia T, Nielsen NE (2003) Variation in phosphorus uptake efficiency by genotypes of cowpea (Vigna unguiculata) due to differences in root and root hair length and induced rhizosphere processes. Plant Soil 251:83–91 | es_ES |
dc.description.references | Li Y, Wang Y, Tong Y, Gao J, Zhang J, Chen S (2005) QTL mapping of phosphorus deficiency tolerance in soybean (Glycine max L. Merr.). Euphytica 142:137–142 | es_ES |
dc.description.references | Li JZ, Xie Y, Dai AY, Liu LF, Li ZC (2009) Root and shoot traits responses to phosphorus deficiency and QTL analysis at seedling stage using introgression lines of rice. J Genet Genomics 36:173–183. doi: 10.1016/S1673-8527(08)60104-6ER | es_ES |
dc.description.references | Liang QA, Cheng XH, Mei MT, Yan XL, Liao H (2010) QTL analysis of root traits as related to phosphorus efficiency in soybean. Ann Bot 106:223–234. doi: 10.1093/aob/mcq097ER | es_ES |
dc.description.references | Liao H, Rubio G, Yan XL, Cao AQ, Brown KM, Lynch JP (2001) Effect of phosphorus availability on basal root shallowness in common bean. Plant Soil 232:69–79 | es_ES |
dc.description.references | Lopez-Bucio J, Cruz-Ramirez A, Herrera-Estrella L (2003) The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol 6:280–287. doi: 10.1016/S1369-5266(03)00035-9ER | es_ES |
dc.description.references | Lynch JP (2007) Roots of the second green revolution. Aust J Bot 55:493–512. doi: 10.1071/BT06118ER | es_ES |
dc.description.references | Lynch JP, Brown KM (2001) Topsoil foraging—an architectural adaptation of plants to low phosphorus availability. Plant Soil 237:225–237 | es_ES |
dc.description.references | Munger HM, Robinson RW (1991) Nomenclature of Cucumis melo L. Cucurbit Genet Coop Rep 14:43–44 | es_ES |
dc.description.references | Pitrat M (2008) Melon (Cucumis melo L.). In: Prohens J, Nuez F (eds) Handbook of plant breeding. Vegetables I. Springer, New York, pp 287–314 | es_ES |
dc.description.references | Robinson RW, Decker-Walters DS (1997) Cucurbits. CAB International, New York | es_ES |
dc.description.references | Shimizu A, Motomura K, Ikehashi H, Kato K, Komatsu A (2008) Genetic analysis of root elongation induced by phosphorus deficiency in rice (Oryza sativa L.): fine QTL mapping and multivariate analysis of related traits. Theor Appl Genet 117:987–996 | es_ES |
dc.description.references | Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:423–447 | es_ES |
dc.description.references | Williamson LC, Leyser HMO, Fitter AH, Ririoux SPCP (2001) Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiol 126:875–882 | es_ES |
dc.description.references | Yang M, Ding G, Shi L, Feng J, Xu F, Meng J (2010) Quantitative trait loci for root morphology in response to low phosphorus stress in Brassica napus. Theor Appl Genet 121:181–193. doi: 10.1007/s00122-010-1301-1 | es_ES |
dc.description.references | Zhang D, Cheng H, Geng L, Kan G, Cui S, Meng Q, Gai J, Yu D (2009) Detection of quantitative trait loci for phosphorus deficiency tolerance at soybean seedling stage. Euphytica 167:313–322 | es_ES |
dc.description.references | Zhao J, Fu J, Liao H, He Y, Nian H, Hu Y (2004) Characterization of root architecture in an applied core collection for phosphorus efficiency of soybean germplasm. Chin Sci Bull 49:1611–1620 | es_ES |