- -

Diversity in root architecture and response to P deficiency in seedlings of Cucumis melo L

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Diversity in root architecture and response to P deficiency in seedlings of Cucumis melo L

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Fita, Ana es_ES
dc.contributor.author Nuez Viñals, Fernando es_ES
dc.contributor.author Picó Sirvent, María Belén es_ES
dc.date.accessioned 2013-10-31T13:22:24Z
dc.date.issued 2011
dc.identifier.issn 0014-2336
dc.identifier.uri http://hdl.handle.net/10251/33169
dc.description.abstract Breeding for more phosphorus (P)-efficient crops is one strategy to reduce the use of P fertilizers, thus mitigating the environmental and economic impacts of agriculture. Variation in root architecture and the response to P deficiency were studied in C. melo. Forty accessions representing genetic diversity within the species were screened for their root systems in normal and deficient P conditions at the seedling stage. Various parameters of P-uptake and P-use were analyzed in a subset of accessions at 40 days. Significant differences in root architecture were observed, with the taproot systems prevailing among the wild and exotic accessions, and more branched root systems in cultivated stocks. Moreover, differences in the plastic response of roots to P starvation were observed. Variation in different P-use and -uptake traits correlated with the root architecture. Within ssp. melo, the inodorus and flexuosus landraces had larger and more branched roots and more efficient P-uptake, thereby providing a close genepool for breeding. Within ssp. agrestis, conomon and momordica accessions can be sources of interest for the enhancement of variation in root architecture and P-use efficiency into cultivated melons. Therefore, the diversity observed within C. melo species could be useful in breeding P-efficient melon cultivars. © 2011 Springer Science+Business Media B.V. es_ES
dc.description.sponsorship This work was supported by projects GVPRE/2008/131, GEN2006-27773-C2-2, and RF2008-00003-C02-02, funded by the Generalitat Valenciana, the ERA-PG programme, and INIA, respectively. The authors thank the COMAV-UPV, ARS-GRIN-USDA, and IPK-Gatersleben germplasm banks for providing many of the accessions studied in this paper. The authors also would like to thank Dr. Ana Quinones for her help in the mineral analysis. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Euphytica es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject P-uptake efficiency es_ES
dc.subject P-use efficiency es_ES
dc.subject Root length es_ES
dc.subject.classification GENETICA es_ES
dc.title Diversity in root architecture and response to P deficiency in seedlings of Cucumis melo L es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1007/s10681-011-0432-z
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GVPRE%2F2008%2F131/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//GEN2006-27773-C2-2-E/ES/MELRIP: UNDERSTANDING THE CLIMATERIC VS NON-CLIMATERIC FRUIT RIPENING MECHANISMS IN MELON USING TRANSCRIPTOMIC, METABOLOMIC AND REVERSE GENETIC APPROACHES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//RF2008-00003-C02-02/ES/Recolección, multiplicación, conservación y caracterizacion de variedades emblematicas de melón de Castilla-La Mancha./ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Fita, A.; Nuez Viñals, F.; Picó Sirvent, MB. (2011). Diversity in root architecture and response to P deficiency in seedlings of Cucumis melo L. Euphytica. 181(3):323-339. https://doi.org/10.1007/s10681-011-0432-z es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s10681-011-0432-z es_ES
dc.description.upvformatpinicio 323 es_ES
dc.description.upvformatpfin 339 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 181 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 41355
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Al-Ghazi Y, Muller B, Pinloche S, Tranbarger TJ, Nacry P, Rossignol M, Tardieu F, Doumas P (2003) Temporal responses of Arabidopsis root architecture to phosphate starvation: evidence for the involvement of auxin signalling. Plant Cell Environ 26:1053–1066 es_ES
dc.description.references Ao J, Fu J, Tian J, Yan X, Liao H (2010) Genetic variability for root morph-architecture traits and root growth dynamics as related to phosphorus efficiency in soybean. Funct Plant Biol 37:304–312. doi: 10.1071/FP09215 es_ES
dc.description.references Araujo A, Antunes I, Teixeira M (2005) Inheritance of root traits and phosphorus uptake in common bean (Phaseolus vulgaris L.) under limited soil phosphorus supply. Euphytica 145:33–40 es_ES
dc.description.references Bates TR, Lynch JP (2001) Root hairs confer a competitive advantage under low phosphorus availability. Plant Soil 236:243–250 es_ES
dc.description.references Beebe SE, Rojas-Pierce M, Yan XL, Blair MW, Pedraza F, Munoz F, Tohme J, Lynch JP (2006) Quantitative trait loci for root architecture traits correlated with phosphorus acquisition in common bean. Crop Sci 46:413–423. doi: 10.2135/cropsci2005.0226ER es_ES
dc.description.references Chevalier F, Pata M, Nacry P, Doumas P, Rossignol M (2003) Effects of phosphate availability on the root system architecture: large-scale analysis of the natural variation between Arabidopsis accessions. Plant Cell and Environment 26:1839–1850 es_ES
dc.description.references Cichy KA, Snapp SS, Blair MW (2009a) Plant growth habit, root architecture traits and tolerance to low soil phosphorus in an Andean bean population. Euphytica 165:257–268 es_ES
dc.description.references Cichy KA, Blair MW, Mendoza CHG, Snapp SS, Kelly JD (2009b) QTL analysis of root architecture traits and low phosphorus tolerance in an Andean bean population. Crop Sci 49:59–68. doi: 10.2135/cropsci2008.03.0142ER es_ES
dc.description.references Cordell D, Drangert J, White S (2009) The story of phosphorus: global food security and food for thought. Global Environ Change Human Policy Dimens 19:292–305. doi: 10.1016/j.gloenvcha.2008.10.009 es_ES
dc.description.references Deleu W, Esteras C, Roig C, Gonzalez-To M, Fernandez-Silva I, Gonzalez-Ibeas D, Blanca J, Aranda MA, Arus P, Nuez F, Monforte AJ, Pico BM, Garcia-Mas J (2009) A set of EST-SNPs for map saturation and cultivar identification in melon. BMC Plant Biol 9:90. doi: 10.1186/1471-2229-9-90 es_ES
dc.description.references Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15 es_ES
dc.description.references Duan HY, Shi L, Ye XS, Wang YH, Xu FS (2009) Identification of phosphorous efficient germplasm in oilseed rape. J Plant Nutr 32:1148–1163. doi: 10.1080/01904160902943171ER es_ES
dc.description.references Fageria NK, Baligar VC (1997a) Upland rice genotypes evaluation for phosphorus use efficiency. J Plant Nutr 22:499–509 es_ES
dc.description.references Fageria NK, Baligar VC (1997b) Phosphorus-use efficiency by corn genotypes. J Plant Nutr 20:1267–1277 es_ES
dc.description.references Fageria NK, Baligar VC (1999) Phosphorus-use efficiency in wheat genotypes. J Plant Nutr 23:331–340 es_ES
dc.description.references Fageria NK, da Costa JGC (2000) Evaluation of common bean genotypes for phosphorus use efficiency. J Plant Nutr 23:1145–1152 es_ES
dc.description.references Fang ZY, Shao C, Meng YJ, Wu P, Chen M (2009) Phosphate signaling in Arabidopsis and Oryza sativa. Plant Sci 176:170–180. doi: 10.1016/j.plantsci.2008.09.007ER es_ES
dc.description.references FAOSTAT (2010) http://faostat.fao.org/ es_ES
dc.description.references Fernandez-Silva I, Eduardo I, Blanca J, Esteras C, Pico B, Nuez F, Arus P, Garcia-Mas J, Monforte AJ (2008) Bin mapping of genomic and EST-derived SSRs in melon (Cucumis melo L.). Theor Appl Genet 118:139–150 es_ES
dc.description.references Fernandez-Trujillo JP, Pico B, Garcia-Mas J, Alvarez JM, Monforte AJ (2011) Breeding for Fruit Quality in Melon. In: Breeding for fruit quality, first edn. John Wiley and Sons, Inc, pp 261 es_ES
dc.description.references Ferriol M, Pico B, Nuez F (2003) Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theor Appl Genet 107:271–282. doi: 10.1007/s00122-003-1242-zER es_ES
dc.description.references Fita A, Pico B, Nuez F (2006) Implications of the genetics of root structure in melon breeding. J Am Soc Hort Sci 131:372–379 es_ES
dc.description.references Fita A, Pico B, Dias RCS, Nuez E (2008a) Effects of root architecture on response to melon vine decline. J Horticult Sci Biotechnol 83:616–623 es_ES
dc.description.references Fita A, Pico B, Monforte AJ, Nuez F (2008b) Genetics of root system architecture using near-isogenic lines of melon. J Am Soc Hort Sci 133:448–458 es_ES
dc.description.references Gorny AG, Sodkiewicz T (2001) Genetic analysis of the nitrogen and phosphorus utilization efficiencies in mature spring barley plants. Plant Breed 120:129–132 es_ES
dc.description.references Hammond JP, Broadley MR, White PJ (2004) Genetic responses to phosphorus deficiency. Ann Bot 94:323–332. doi: 10.1093/aob/mch156 es_ES
dc.description.references Hammond JP, Broadley MR, White PJ, King GJ, Bowen HC, Hayden R, Meacham MC, Mead A, Overs T, Spracklen WP, Greenwood DJ (2009) Shoot yield drives phosphorus use efficiency in Brassica oleracea and correlates with root architecture traits. J Exp Bot 60:1953–1968. doi: 10.1093/jxb/erp083 es_ES
dc.description.references Hu Y, Ye X, Shi L, Duan H, Xu F (2010) Genotypic differences in root morphology and phosphorus uptake kinetics in Brassica napus under low phosphorus supply. J Plant Nutr 33:889–901. doi: 10.1080/01904161003658239 es_ES
dc.description.references Jeffrey C (1980) A review of the cucurbitaceae. Bot J Linn Soc 81:233–247 es_ES
dc.description.references Krasilnikoff G, Gahoonia T, Nielsen NE (2003) Variation in phosphorus uptake efficiency by genotypes of cowpea (Vigna unguiculata) due to differences in root and root hair length and induced rhizosphere processes. Plant Soil 251:83–91 es_ES
dc.description.references Li Y, Wang Y, Tong Y, Gao J, Zhang J, Chen S (2005) QTL mapping of phosphorus deficiency tolerance in soybean (Glycine max L. Merr.). Euphytica 142:137–142 es_ES
dc.description.references Li JZ, Xie Y, Dai AY, Liu LF, Li ZC (2009) Root and shoot traits responses to phosphorus deficiency and QTL analysis at seedling stage using introgression lines of rice. J Genet Genomics 36:173–183. doi: 10.1016/S1673-8527(08)60104-6ER es_ES
dc.description.references Liang QA, Cheng XH, Mei MT, Yan XL, Liao H (2010) QTL analysis of root traits as related to phosphorus efficiency in soybean. Ann Bot 106:223–234. doi: 10.1093/aob/mcq097ER es_ES
dc.description.references Liao H, Rubio G, Yan XL, Cao AQ, Brown KM, Lynch JP (2001) Effect of phosphorus availability on basal root shallowness in common bean. Plant Soil 232:69–79 es_ES
dc.description.references Lopez-Bucio J, Cruz-Ramirez A, Herrera-Estrella L (2003) The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol 6:280–287. doi: 10.1016/S1369-5266(03)00035-9ER es_ES
dc.description.references Lynch JP (2007) Roots of the second green revolution. Aust J Bot 55:493–512. doi: 10.1071/BT06118ER es_ES
dc.description.references Lynch JP, Brown KM (2001) Topsoil foraging—an architectural adaptation of plants to low phosphorus availability. Plant Soil 237:225–237 es_ES
dc.description.references Munger HM, Robinson RW (1991) Nomenclature of Cucumis melo L. Cucurbit Genet Coop Rep 14:43–44 es_ES
dc.description.references Pitrat M (2008) Melon (Cucumis melo L.). In: Prohens J, Nuez F (eds) Handbook of plant breeding. Vegetables I. Springer, New York, pp 287–314 es_ES
dc.description.references Robinson RW, Decker-Walters DS (1997) Cucurbits. CAB International, New York es_ES
dc.description.references Shimizu A, Motomura K, Ikehashi H, Kato K, Komatsu A (2008) Genetic analysis of root elongation induced by phosphorus deficiency in rice (Oryza sativa L.): fine QTL mapping and multivariate analysis of related traits. Theor Appl Genet 117:987–996 es_ES
dc.description.references Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:423–447 es_ES
dc.description.references Williamson LC, Leyser HMO, Fitter AH, Ririoux SPCP (2001) Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiol 126:875–882 es_ES
dc.description.references Yang M, Ding G, Shi L, Feng J, Xu F, Meng J (2010) Quantitative trait loci for root morphology in response to low phosphorus stress in Brassica napus. Theor Appl Genet 121:181–193. doi: 10.1007/s00122-010-1301-1 es_ES
dc.description.references Zhang D, Cheng H, Geng L, Kan G, Cui S, Meng Q, Gai J, Yu D (2009) Detection of quantitative trait loci for phosphorus deficiency tolerance at soybean seedling stage. Euphytica 167:313–322 es_ES
dc.description.references Zhao J, Fu J, Liao H, He Y, Nian H, Hu Y (2004) Characterization of root architecture in an applied core collection for phosphorus efficiency of soybean germplasm. Chin Sci Bull 49:1611–1620 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem