dc.contributor.author |
Arangú Lobig, Marlene Alicia
|
es_ES |
dc.contributor.author |
Salido Gregorio, Miguel Angel
|
es_ES |
dc.date.accessioned |
2013-11-04T13:22:33Z |
|
dc.date.issued |
2011 |
|
dc.identifier.issn |
1641-876X |
|
dc.identifier.uri |
http://hdl.handle.net/10251/33211 |
|
dc.description.abstract |
Constraint programming is a powerful software technology for solving numerous real-life problems. Many of these problems can be modeled as Constraint Satisfaction Problems (CSPs) and solved using constraint programming techniques. However, solving a CSP is NP-complete so filtering techniques to reduce the search space are still necessary. Arc-consistency algorithms are widely used to prune the search space. The concept of arc-consistency is bidirectional, i.e., it must be ensured in both directions of the constraint (direct and inverse constraints). Two of the most well-known and frequently used arc-consistency algorithms for filtering CSPs are AC3 and AC4. These algorithms repeatedly carry out revisions and require support checks for identifying and deleting all unsupported values from the domains. Nevertheless, many revisions are ineffective, i.e., they cannot delete any value and consume a lot of checks and time. In this paper, we present AC4-OP, an optimized version of AC4 that manages the binary and non-normalized constraints in only one direction, storing the inverse founded supports for their later evaluation. Thus, it reduces the propagation phase avoiding unnecessary or ineffective checking. The use of AC4-OP reduces the number of constraint checks by 50% while pruning the same search space as AC4. The evaluation section shows the improvement of AC4-OP over AC4, AC6 and AC7 in random and non-normalized instances. |
es_ES |
dc.description.sponsorship |
This work has been partially supported by the research projects TIN2010-20976-C02-01 (Ministry of Science and Innovation, Spain) and P19/08 (Ministry of Development, Spain, FEDER). |
en_EN |
dc.language |
Inglés |
es_ES |
dc.publisher |
University of Zielona Gora Press |
es_ES |
dc.relation.ispartof |
International Journal of Applied Mathematics and Computer Science |
es_ES |
dc.rights |
Reserva de todos los derechos |
es_ES |
dc.subject |
Constraint satisfaction problems |
es_ES |
dc.subject |
Fltering techniques |
es_ES |
dc.subject |
Consistency algorithms |
es_ES |
dc.subject.classification |
LENGUAJES Y SISTEMAS INFORMATICOS |
es_ES |
dc.title |
A Fine-grained Arc-consistency Algorithm for Non-Normalized Constraint Satisfaction Problems |
es_ES |
dc.type |
Artículo |
es_ES |
dc.embargo.lift |
10000-01-01 |
|
dc.embargo.terms |
forever |
es_ES |
dc.identifier.doi |
10.2478/v10006-011-0058-2 |
|
dc.relation.projectID |
info:eu-repo/grantAgreement/MICINN//TIN2010-20976-C02-01/ES/TECNICAS PARA LA EVALUACION Y OBTENCION DE SOLUCIONES ESTABLES Y ROBUSTAS EN PROBLEMAS DE OPTIMIZACION Y SATISFACCION DE RESTRICCIONES/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/MFOM//P19%2F08/ |
es_ES |
dc.rights.accessRights |
Cerrado |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Instituto Universitario de Automática e Informática Industrial - Institut Universitari d'Automàtica i Informàtica Industrial |
es_ES |
dc.description.bibliographicCitation |
Arangú Lobig, MA.; Salido Gregorio, MA. (2011). A Fine-grained Arc-consistency Algorithm for Non-Normalized Constraint Satisfaction Problems. International Journal of Applied Mathematics and Computer Science. 21(4):733-744. https://doi.org/10.2478/v10006-011-0058-2 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
Http://dx.doi.org/10.2478/v10006-011-0058-2 |
es_ES |
dc.description.upvformatpinicio |
733 |
es_ES |
dc.description.upvformatpfin |
744 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
21 |
es_ES |
dc.description.issue |
4 |
es_ES |
dc.relation.senia |
198823 |
|
dc.contributor.funder |
Ministerio de Ciencia e Innovación |
es_ES |
dc.description.references |
Barták, R., Salido, M. A., & Rossi, F. (2008). Constraint satisfaction techniques in planning and scheduling. Journal of Intelligent Manufacturing, 21(1), 5-15. doi:10.1007/s10845-008-0203-4 |
es_ES |
dc.description.references |
Bessière, C. (1994). Arc-consistency and arc-consistency again. Artificial Intelligence, 65(1), 179-190. doi:10.1016/0004-3702(94)90041-8 |
es_ES |
dc.description.references |
Bessiere, C. (2006). Constraint propagation, <i>Technical report</i>, CNRS/University of Montpellier, Montpellier. |
es_ES |
dc.description.references |
Bessiére, C., Freuder, E. C., & Regin, J.-C. (1999). Using constraint metaknowledge to reduce arc consistency computation. Artificial Intelligence, 107(1), 125-148. doi:10.1016/s0004-3702(98)00105-2 |
es_ES |
dc.description.references |
Bessière, C., Régin, J.-C., Yap, R. H. C., & Zhang, Y. (2005). An optimal coarse-grained arc consistency algorithm. Artificial Intelligence, 165(2), 165-185. doi:10.1016/j.artint.2005.02.004 |
es_ES |
dc.description.references |
CHMEISS, A., & JEGOU, P. (1998). EFFICIENT PATH-CONSISTENCY PROPAGATION. International Journal on Artificial Intelligence Tools, 07(02), 121-142. doi:10.1142/s0218213098000081 |
es_ES |
dc.description.references |
Deng, J., Becerra, V., & Stobart, R. (2009). Input Constraints Handling in an MPC/Feedback Linearization Scheme. International Journal of Applied Mathematics and Computer Science, 19(2), 219-232. doi:10.2478/v10006-009-0018-2 |
es_ES |
dc.description.references |
Van Hentenryck, P., Deville, Y., & Teng, C.-M. (1992). A generic arc-consistency algorithm and its specializations. Artificial Intelligence, 57(2-3), 291-321. doi:10.1016/0004-3702(92)90020-x |
es_ES |
dc.description.references |
Mackworth, A. K. (1977). Consistency in networks of relations. Artificial Intelligence, 8(1), 99-118. doi:10.1016/0004-3702(77)90007-8 |
es_ES |
dc.description.references |
Mohr, R., & Henderson, T. C. (1986). Arc and path consistency revisited. Artificial Intelligence, 28(2), 225-233. doi:10.1016/0004-3702(86)90083-4 |
es_ES |
dc.description.references |
Perlin, M. (1992). Arc consistency for factorable relations. Artificial Intelligence, 53(2-3), 329-342. doi:10.1016/0004-3702(92)90077-b |
es_ES |