- -

Implementing Environmental Flows in Complex Water Resources Systems Case Study: The Duero River Basin, Spain

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Implementing Environmental Flows in Complex Water Resources Systems Case Study: The Duero River Basin, Spain

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Paredes Arquiola, Javier es_ES
dc.contributor.author Martinez-Capel, Francisco es_ES
dc.contributor.author Solera Solera, Abel es_ES
dc.contributor.author Aguilella Vidal, Vicent es_ES
dc.date.accessioned 2013-11-08T11:06:53Z
dc.date.issued 2011
dc.identifier.issn 1535-1459
dc.identifier.uri http://hdl.handle.net/10251/33336
dc.description.abstract European river basin authorities are responsible for the implementation of the new river basin management plans in accordance with the European Water Framework Directive. This paper presents a new methodology framework and approach to define and evaluate environmental flow regimes in the realistic complexities that exist with multiple water resource needs at a basin scale. This approach links river basin simulation models and habitat time series analysis to generate ranges of environmental flows (e-flows), which are evaluated by using habitat, hydropower production and reliability of water supply criteria to produce best possible alternatives. With the use of these tools, the effects of the proposed e-flows have been assessed to help in the consultation process. The possible effects analysed are impacts on water supply reliability, hydropower production and aquatic habitat. After public agreements, a heuristic optimization process was applied to maximize e-flows and habitat indicators, while maintaining a legal level of reliability for water resource demands. The final optimal e-flows were considered for the river basin management plans of the Duero river basin. This paper demonstrates the importance of considering quantitative hydrologic and ecological aspects of e-flows at the basin scale in addressing complex water resource systems. This approach merges standard methods such as physical habitat simulations and time series analyses for evaluating alternatives, with recent methods to simulate and optimize water management alternatives in river networks. It can be integrated with or used to complement other frameworks for e-flow assessments such as the In-stream Flow Incremental Methodology and Ecological Limits of Hydrologic Alteration. es_ES
dc.description.sponsorship We are grateful to Professor Jay Lund and the reviewers for their very helpful comments and suggestions. We thank the Confederacion Hidrografica del Duero (Spanish Ministry of Environment) for the data provided to develop this study and the Spanish Ministry of Science and Innovation (Comision Interministerial de Ciencia y Tecnologia, CICYT) for the funding projects, INTEGRAME (contract CGL2009-11798) and SCARCE (programme Consolider-Ingenio 2010, project CSD2009-00065). en_EN
dc.language Inglés es_ES
dc.publisher Wiley-Blackwell es_ES
dc.relation.ispartof River Research and Applications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject AQUATOOL es_ES
dc.subject E-flows es_ES
dc.subject Environmental optimization es_ES
dc.subject Habitat time series es_ES
dc.subject River basin management plan (RBMP) es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.title Implementing Environmental Flows in Complex Water Resources Systems Case Study: The Duero River Basin, Spain es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/rra.1617
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CSD2009-00065/ES/Evaluación y predicción de los efectos del cambio global en la cantidad y la calidad del agua en ríos ibéricos/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CGL2009-11798/ES/CGL2009-11798/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.description.bibliographicCitation Paredes Arquiola, J.; Martinez-Capel, F.; Solera Solera, A.; Aguilella Vidal, V. (2011). Implementing Environmental Flows in Complex Water Resources Systems Case Study: The Duero River Basin, Spain. River Research and Applications. 29(4):451-468. doi:10.1002/rra.1617 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/rra.1617 es_ES
dc.description.upvformatpinicio 451 es_ES
dc.description.upvformatpfin 468 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 29 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 217865
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Andreu, J., Capilla, J., & Sanchís, E. (1996). AQUATOOL, a generalized decision-support system for water-resources planning and operational management. Journal of Hydrology, 177(3-4), 269-291. doi:10.1016/0022-1694(95)02963-x es_ES
dc.description.references Bartholow JM Waddle TJ 1986 Introduction to stream network habitat analysis es_ES
dc.description.references Batalla, R. J., & Vericat, D. (2009). Hydrological and sediment transport dynamics of flushing flows: implications for management in large Mediterranean Rivers. River Research and Applications, 25(3), 297-314. doi:10.1002/rra.1160 es_ES
dc.description.references Belmar, O., Velasco, J., & Martinez-Capel, F. (2011). Hydrological Classification of Natural Flow Regimes to Support Environmental Flow Assessments in Intensively Regulated Mediterranean Rivers, Segura River Basin (Spain). Environmental Management, 47(5), 992-1004. doi:10.1007/s00267-011-9661-0 es_ES
dc.description.references Booker, D. J., & Acreman, M. C. (2007). Generalisation of physical habitat-discharge relationships. Hydrology and Earth System Sciences, 11(1), 141-157. doi:10.5194/hess-11-141-2007 es_ES
dc.description.references Bovee KD 1982 A Guide to Stream Habitat Analysis Using Instream Flow Incremental Methodology es_ES
dc.description.references Bovee KD 1986 Development and Evaluation of Habitat Suitability Criteria for Use in the Instream Flow Incremental Methodology 235 es_ES
dc.description.references Bovee KD Lamb BL Bartholow JM Stalnaker CB Taylor J Henriksen J 1998 Stream Habitat Analysis Using the Instream Flow Incremental Methodology es_ES
dc.description.references Capra, H., Breil, P., & Souchon, Y. (1995). A new tool to interpret magnitude and duration of fish habitat variations. Regulated Rivers: Research & Management, 10(2-4), 281-289. doi:10.1002/rrr.3450100221 es_ES
dc.description.references CHD 2008 Memoria Hidrográfica del Duero es_ES
dc.description.references Dunbar MJ Gustard A Acreman MC Elliott CRN 1998 Review of overseas approaches to setting river flow objectives es_ES
dc.description.references Flug M Bartholow J Campbell S 1999 Systems Impact Assessment Model for the Klamath-Trinity River 26th Annual ASCE Water Resources Planning and Management Conference Proceedings es_ES
dc.description.references De Jalón, D. G. (2003). The Spanish Experience in Determining Minimum Flow Regimes in Regulated Streams. Canadian Water Resources Journal, 28(2), 185-198. doi:10.4296/cwrj2802185 es_ES
dc.description.references Gore, J. A., & Nestler, J. M. (1988). Instream flow studies in perspective. Regulated Rivers: Research & Management, 2(2), 93-101. doi:10.1002/rrr.3450020204 es_ES
dc.description.references Hashimoto, T., Stedinger, J. R., & Loucks, D. P. (1982). Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation. Water Resources Research, 18(1), 14-20. doi:10.1029/wr018i001p00014 es_ES
dc.description.references INFRAECO 2009 Estudio de Caudales Ecológicos en Masas de Agua Superficiales en la Demarcación del Duero es_ES
dc.description.references IPH 2008 Orden ARM/2656/2008, de 10 de septiembre, por la que se aprueba la instrucción de planificación hidrológica Ministerio de medio ambiente y medio rural y marino 38472 38582 es_ES
dc.description.references Jowett, I. G. (1997). Instream flow methods: a comparison of approaches. Regulated Rivers: Research & Management, 13(2), 115-127. doi:10.1002/(sici)1099-1646(199703)13:2<115::aid-rrr440>3.0.co;2-6 es_ES
dc.description.references Jowett IG 1999 RHYHABSIM River hydraulics and Habitat Simulation. Version 5.0 es_ES
dc.description.references Jowett, I. G., & Biggs, B. J. F. (2009). Application of the ‘natural flow paradigm’ in a New Zealand context. River Research and Applications, 25(9), 1126-1135. doi:10.1002/rra.1208 es_ES
dc.description.references Jowett, I. G., & Davey, A. J. H. (2007). A Comparison of Composite Habitat Suitability Indices and Generalized Additive Models of Invertebrate Abundance and Fish Presence–Habitat Availability. Transactions of the American Fisheries Society, 136(2), 428-444. doi:10.1577/t06-104.1 es_ES
dc.description.references King JM Tharme R 1994 Assessment of the In-Stream Flow Incremental Methodology and Initial Development of Alternative In-Stream Flow Methodologies for South Africa es_ES
dc.description.references King, J., Brown, C., & Sabet, H. (2003). A scenario-based holistic approach to environmental flow assessments for rivers. River Research and Applications, 19(5-6), 619-639. doi:10.1002/rra.709 es_ES
dc.description.references Lamouroux, N., & Jowett, I. G. (2005). Generalized instream habitat models. Canadian Journal of Fisheries and Aquatic Sciences, 62(1), 7-14. doi:10.1139/f04-163 es_ES
dc.description.references Mahoney, J. M., & Rood, S. B. (1998). Streamflow requirements for cottonwood seedling recruitment—An integrative model. Wetlands, 18(4), 634-645. doi:10.1007/bf03161678 es_ES
dc.description.references Martínez-Capel F 2000 Preferencias de Microhábitat de Lucioarbus bocagei, Chondrostoma polylepis y Leuciscus pyrenaicus en la cuenca del río Tajo Madrid es_ES
dc.description.references Martínez-Capel F Hernández Mascarell AB Peredo Parada M Alcaraz Hernández JD Garófano Gómez V Orozco González AA 2006 Validació biològica del règim de cabals de manteniment definits al pla sectorial de les conques internes de catalunya en 10 trams fluvials http://aca-web.gencat.cat/aca/documents/es/planificacio/cabals/validacio_cabals_CIC_complet.pdf es_ES
dc.description.references MARTÍNEZ-CAPEL, F., GARCÍA DE JALÓN, D., WERENITZKY, D., BAEZA, D., & RODILLA-ALAMÁ, M. (2009). Microhabitat use by three endemic Iberian cyprinids in Mediterranean rivers (Tagus River Basin, Spain). Fisheries Management and Ecology, 16(1), 52-60. doi:10.1111/j.1365-2400.2008.00645.x es_ES
dc.description.references Mayo M 2000 Determinación de regímenes de caudales ecológicos mínimos: adaptación del método IFIM-PHABSIM y aplicación a los ríos Españoles es_ES
dc.description.references Milhous, R. T. (1998). Modelling of instream flow needs: the link between sediment and aquatic habitat. Regulated Rivers: Research & Management, 14(1), 79-94. doi:10.1002/(sici)1099-1646(199801/02)14:1<79::aid-rrr478>3.0.co;2-9 es_ES
dc.description.references Milhous RT Wegner DL Waddle TJ 1981 User's Guide to the Physical Habitat Simulation System es_ES
dc.description.references Milhous RT Bartholow JM Updike MA Moos AR 1990 Reference Manual for Generation and Analysis of Habitat Time Series-Version Ii es_ES
dc.description.references Mouton, A. M., Alcaraz-Hernández, J. D., De Baets, B., Goethals, P. L. M., & Martínez-Capel, F. (2011). Data-driven fuzzy habitat suitability models for brown trout in Spanish Mediterranean rivers. Environmental Modelling & Software, 26(5), 615-622. doi:10.1016/j.envsoft.2010.12.001 es_ES
dc.description.references Olivares MA 2008 Optimal hydropower reservoir operation with environmental requirements es_ES
dc.description.references Palau A Alcazar J 1996 The Basic Flow: An Alternative Approach to Calculate Minimum Environmental Instream Flows Proceedings of 2nd International Symposium on Habitats Hydraulics. Ecohydraulics 2000 A 547 558 es_ES
dc.description.references Parasiewicz, P. (2008). Habitat time series analysis to define flow augmentation strategy for the Quinebaug River, Connecticut and Massachusetts, USA. River Research and Applications, 24(4), 439-452. doi:10.1002/rra.1066 es_ES
dc.description.references Paredes-Arquiola, J., Andreu-Álvarez, J., Martín-Monerris, M., & Solera, A. (2010). Water Quantity and Quality Models Applied to the Jucar River Basin, Spain. Water Resources Management, 24(11), 2759-2779. doi:10.1007/s11269-010-9578-z es_ES
dc.description.references Petts, G. E. (2009). Instream Flow Science For Sustainable River Management. JAWRA Journal of the American Water Resources Association, 45(5), 1071-1086. doi:10.1111/j.1752-1688.2009.00360.x es_ES
dc.description.references POFF, N. L., RICHTER, B. D., ARTHINGTON, A. H., BUNN, S. E., NAIMAN, R. J., KENDY, E., … WARNER, A. (2010). The ecological limits of hydrologic alteration (ELOHA): a new framework for developing regional environmental flow standards. Freshwater Biology, 55(1), 147-170. doi:10.1111/j.1365-2427.2009.02204.x es_ES
dc.description.references Richter, B. D., Baumgartner, J. V., Powell, J., & Braun, D. P. (1996). A Method for Assessing Hydrologic Alteration within Ecosystems. Conservation Biology, 10(4), 1163-1174. doi:10.1046/j.1523-1739.1996.10041163.x es_ES
dc.description.references RICHTER, B., BAUMGARTNER, J., WIGINGTON, R., & BRAUN, D. (1997). How much water does a river need? Freshwater Biology, 37(1), 231-249. doi:10.1046/j.1365-2427.1997.00153.x es_ES
dc.description.references Richter, B. D., Warner, A. T., Meyer, J. L., & Lutz, K. (2006). A collaborative and adaptive process for developing environmental flow recommendations. River Research and Applications, 22(3), 297-318. doi:10.1002/rra.892 es_ES
dc.description.references ROOD, S. B., GOURLEY, C. R., AMMON, E. M., HEKI, L. G., KLOTZ, J. R., MORRISON, M. L., … WAGNER, P. L. (2003). Flows for Floodplain Forests: A Successful Riparian Restoration. BioScience, 53(7), 647. doi:10.1641/0006-3568(2003)053[0647:ffffas]2.0.co;2 es_ES
dc.description.references Shirvell CS 1986 Pitfalls of Physical Habitat Simulation in the Instream Flow Incremental Methodology 1460 es_ES
dc.description.references Tharme, R. E. (2003). A global perspective on environmental flow assessment: emerging trends in the development and application of environmental flow methodologies for rivers. River Research and Applications, 19(5-6), 397-441. doi:10.1002/rra.736 es_ES
dc.description.references Toffolon, M., Siviglia, A., & Zolezzi, G. (2010). Thermal wave dynamics in rivers affected by hydropeaking. Water Resources Research, 46(8). doi:10.1029/2009wr008234 es_ES
dc.description.references Waddle J 1992 A Method for Instream Flow Water Management Colorado State University es_ES
dc.description.references Young WJ Scott AC Cuddy SM Rennie BA 2003 Murray Flow Assessment Tool a Technical Description es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem