- -

Influence of the preparation procedure on the catalytic activity of gold supported on diamond nanoparticles for phenol peroxidation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of the preparation procedure on the catalytic activity of gold supported on diamond nanoparticles for phenol peroxidation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martín González, Roberto es_ES
dc.contributor.author Navalón Oltra, Sergio es_ES
dc.contributor.author Delgado, Juan José es_ES
dc.contributor.author Calvino, José J. es_ES
dc.contributor.author Alvaro Rodríguez, Maria Mercedes es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2013-11-19T12:29:24Z
dc.date.issued 2011-08-16
dc.identifier.issn 0947-6539
dc.identifier.uri http://hdl.handle.net/10251/33738
dc.description.abstract The catalytic activity of diamond-supported gold nanoparticle (Au/D) samples prepared by the deposition/precipitation method have been correlated as a function of the pH and the reduction treatment. It was found that the most active material is the one prepared at pH 5 followed by subsequent thermal treatment at 300°C under hydrogen. TEM images show that Au/D prepared under optimal conditions contain very small gold nanoparticles with sizes below 2 nm that are proposed to be responsible for the catalytic activity. Tests of productivity using large phenol (50 g L-1) and H2O2 excesses (100 gL-1) and reuse gives a minimum TON of 458,759 moles of phenol degraded per gold atom. Analysis of the organic compounds extracted from the deactivated solid catalyst indicates that the poisons are mostly hydroxylated dicarboxylic acids arising from the degradative oxidation of the phenyl ring. By determining the efficiency for phenol degradation and the amount of O2 evolved two different reactions of H2O2 decomposition (the Fenton reaction at acidic pH values and spurious O2 evolution at basic pH values) are proposed for Au/D catalysis. The activation energy of the two processes is very similar (ranging between 30 and 35 kJ mol-1). By using dimethylsulfoxide as a radical scavenger and N-tert-butyl-a-phenylnitrone as a spin trap under aerated conditions, the EPR spectrum of the expected PBN OCH3 adduct was detected, supporting the generation of HO., characteristic of Fenton chemistry in the process. Phenol degradation, on the other hand, exhibits the same activation energy as H2O2 decomposition at pH 4 (due to the barrierless attack of HO. to phenol), but increases the activation energy gradually up to about 90 kJ mol-1 at pH 7 and then undergoes a subsequent reduction as the pH increases reaching another minimum at pH 8.5 (49 kJ mol-1). es_ES
dc.description.sponsorship Financial support by the Spanish MICINN (H. G., CTQ2009-11583 and CONSOLIDER-INGENIO Multicat, M. A., CTQ2010-18671, and J.J.C. MAT2008-00889-NAN) is gratefully acknowledged. R. M. thanks the Spanish MICINN for a postgraduate scholarship. S.N. thanks the Technical University of Valencia for a postgraduate research contract (Cantera Programme). en_EN
dc.format.extent 9 es_ES
dc.language Inglés es_ES
dc.publisher Wiley-VCH Verlag es_ES
dc.relation.ispartof Chemistry - A European Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Diamond es_ES
dc.subject Gold es_ES
dc.subject Heterogeneous catalysis es_ES
dc.subject Nanoparticles es_ES
dc.subject Transmission electron microscopy es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Influence of the preparation procedure on the catalytic activity of gold supported on diamond nanoparticles for phenol peroxidation es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/chem.201100955
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2008-00889/ES/CATALIZADORES NANOESTRUCTURADOS A BASE DE OXIDOS LANTANIDOS PARA LA PRODUCCION DE HIDROGENO Y BIODIESEL/ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTQ2010-18671/ES/APLICACION DE SOLIDOS RETICULARES METAL-ORGANICO MODIFICADOS COMO CATALIZADORES HETEROGENEOS EN PROCESOS DE OXIDACION AEROBICA Y EN REACCIONES PROMOVIDAS POR ACIDOS DE LEWIS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTQ2009-11583/ES/CTQ2009-11583/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Martín González, R.; Navalón Oltra, S.; Delgado, JJ.; Calvino, JJ.; Alvaro Rodríguez, MM.; García Gómez, H. (2011). Influence of the preparation procedure on the catalytic activity of gold supported on diamond nanoparticles for phenol peroxidation. Chemistry - A European Journal. 17(34):9494-9502. doi:10.1002/chem.201100955 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/chem.201100955 es_ES
dc.description.upvformatpinicio 9494 es_ES
dc.description.upvformatpfin 9502 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 34 es_ES
dc.relation.senia 202443
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Fenton, H. J. H. (1894). LXXIII.—Oxidation of tartaric acid in presence of iron. J. Chem. Soc., Trans., 65(0), 899-910. doi:10.1039/ct8946500899 es_ES
dc.description.references Haber, F., & Weiss, J. (1932). �ber die Katalyse des Hydroperoxydes. Die Naturwissenschaften, 20(51), 948-950. doi:10.1007/bf01504715 es_ES
dc.description.references Pignatello, J. J., Oliveros, E., & MacKay, A. (2006). Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry. Critical Reviews in Environmental Science and Technology, 36(1), 1-84. doi:10.1080/10643380500326564 es_ES
dc.description.references Navalon, S., Alvaro, M., & Garcia, H. (2010). Heterogeneous Fenton catalysts based on clays, silicas and zeolites. Applied Catalysis B: Environmental, 99(1-2), 1-26. doi:10.1016/j.apcatb.2010.07.006 es_ES
dc.description.references Han, Y.-F., Phonthammachai, N., Ramesh, K., Zhong, Z., & White, T. (2008). Removing Organic Compounds from Aqueous Medium via Wet Peroxidation by Gold Catalysts. Environmental Science & Technology, 42(3), 908-912. doi:10.1021/es071124f es_ES
dc.description.references Navalon, S., Martin, R., Alvaro, M., & Garcia, H. (2010). Gold on Diamond Nanoparticles as a Highly Efficient Fenton Catalyst. Angewandte Chemie, 122(45), 8581-8585. doi:10.1002/ange.201003216 es_ES
dc.description.references Navalon, S., Martin, R., Alvaro, M., & Garcia, H. (2010). Gold on Diamond Nanoparticles as a Highly Efficient Fenton Catalyst. Angewandte Chemie International Edition, 49(45), 8403-8407. doi:10.1002/anie.201003216 es_ES
dc.description.references Chen, P. ., Ding, Y. ., Chen, Q., Huang, F. ., & Yun, S. . (2000). Spherical nanometer-sized diamond obtained from detonation. Diamond and Related Materials, 9(9-10), 1722-1725. doi:10.1016/s0925-9635(00)00306-x es_ES
dc.description.references HARUTA, M. (1989). Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. Journal of Catalysis, 115(2), 301-309. doi:10.1016/0021-9517(89)90034-1 es_ES
dc.description.references Navalon, S., Martin, R., Alvaro, M., & Garcia, H. (2011). Sunlight-Assisted Fenton Reaction Catalyzed by Gold Supported on Diamond Nanoparticles as Pretreatment for Biological Degradation of Aqueous Phenol Solutions. ChemSusChem, 4(5), 650-657. doi:10.1002/cssc.201000453 es_ES
dc.description.references Haruta, M. (1997). Size- and support-dependency in the catalysis of gold. Catalysis Today, 36(1), 153-166. doi:10.1016/s0920-5861(96)00208-8 es_ES
dc.description.references Corma, A., & Garcia, H. (2008). Supported gold nanoparticles as catalysts for organic reactions. Chemical Society Reviews, 37(9), 2096. doi:10.1039/b707314n es_ES
dc.description.references Abad, A., Corma, A., & García, H. (2007). Catalyst Parameters Determining Activity and Selectivity of Supported Gold Nanoparticles for the Aerobic Oxidation of Alcohols: The Molecular Reaction Mechanism. Chemistry - A European Journal, 14(1), 212-222. doi:10.1002/chem.200701263 es_ES
dc.description.references Martín, R., Heydorn, P. C., Alvaro, M., & Garcia, H. (2009). General Strategy for High-Density Covalent Functionalization of Diamond Nanoparticles Using Fenton Chemistry. Chemistry of Materials, 21(19), 4505-4514. doi:10.1021/cm9012602 es_ES
dc.description.references Martín, R., Álvaro, M., Herance, J. R., & García, H. (2010). Fenton-Treated Functionalized Diamond Nanoparticles as Gene Delivery System. ACS Nano, 4(1), 65-74. doi:10.1021/nn901616c es_ES
dc.description.references Martín, R., Navalon, S., Alvaro, M., & Garcia, H. (2011). Optimized water treatment by combining catalytic Fenton reaction using diamond supported gold and biological degradation. Applied Catalysis B: Environmental, 103(1-2), 246-252. doi:10.1016/j.apcatb.2011.01.035 es_ES
dc.description.references Burkitt, M. J., & Mason, R. P. (1991). Direct evidence for in vivo hydroxyl-radical generation in experimental iron overload: an ESR spin-trapping investigation. Proceedings of the National Academy of Sciences, 88(19), 8440-8444. doi:10.1073/pnas.88.19.8440 es_ES
dc.description.references Liotta, L. F., Gruttadauria, M., Di Carlo, G., Perrini, G., & Librando, V. (2009). Heterogeneous catalytic degradation of phenolic substrates: Catalysts activity. Journal of Hazardous Materials, 162(2-3), 588-606. doi:10.1016/j.jhazmat.2008.05.115 es_ES
dc.description.references Garrido-Ramírez, E. G., Theng, B. K. ., & Mora, M. L. (2010). Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions — A review. Applied Clay Science, 47(3-4), 182-192. doi:10.1016/j.clay.2009.11.044 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem