Mostrar el registro sencillo del ítem
dc.contributor.author | Martín González, Roberto | es_ES |
dc.contributor.author | Navalón Oltra, Sergio | es_ES |
dc.contributor.author | Delgado, Juan José | es_ES |
dc.contributor.author | Calvino, José J. | es_ES |
dc.contributor.author | Alvaro Rodríguez, Maria Mercedes | es_ES |
dc.contributor.author | García Gómez, Hermenegildo | es_ES |
dc.date.accessioned | 2013-11-19T12:29:24Z | |
dc.date.issued | 2011-08-16 | |
dc.identifier.issn | 0947-6539 | |
dc.identifier.uri | http://hdl.handle.net/10251/33738 | |
dc.description.abstract | The catalytic activity of diamond-supported gold nanoparticle (Au/D) samples prepared by the deposition/precipitation method have been correlated as a function of the pH and the reduction treatment. It was found that the most active material is the one prepared at pH 5 followed by subsequent thermal treatment at 300°C under hydrogen. TEM images show that Au/D prepared under optimal conditions contain very small gold nanoparticles with sizes below 2 nm that are proposed to be responsible for the catalytic activity. Tests of productivity using large phenol (50 g L-1) and H2O2 excesses (100 gL-1) and reuse gives a minimum TON of 458,759 moles of phenol degraded per gold atom. Analysis of the organic compounds extracted from the deactivated solid catalyst indicates that the poisons are mostly hydroxylated dicarboxylic acids arising from the degradative oxidation of the phenyl ring. By determining the efficiency for phenol degradation and the amount of O2 evolved two different reactions of H2O2 decomposition (the Fenton reaction at acidic pH values and spurious O2 evolution at basic pH values) are proposed for Au/D catalysis. The activation energy of the two processes is very similar (ranging between 30 and 35 kJ mol-1). By using dimethylsulfoxide as a radical scavenger and N-tert-butyl-a-phenylnitrone as a spin trap under aerated conditions, the EPR spectrum of the expected PBN OCH3 adduct was detected, supporting the generation of HO., characteristic of Fenton chemistry in the process. Phenol degradation, on the other hand, exhibits the same activation energy as H2O2 decomposition at pH 4 (due to the barrierless attack of HO. to phenol), but increases the activation energy gradually up to about 90 kJ mol-1 at pH 7 and then undergoes a subsequent reduction as the pH increases reaching another minimum at pH 8.5 (49 kJ mol-1). | es_ES |
dc.description.sponsorship | Financial support by the Spanish MICINN (H. G., CTQ2009-11583 and CONSOLIDER-INGENIO Multicat, M. A., CTQ2010-18671, and J.J.C. MAT2008-00889-NAN) is gratefully acknowledged. R. M. thanks the Spanish MICINN for a postgraduate scholarship. S.N. thanks the Technical University of Valencia for a postgraduate research contract (Cantera Programme). | en_EN |
dc.format.extent | 9 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Wiley-VCH Verlag | es_ES |
dc.relation.ispartof | Chemistry - A European Journal | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Diamond | es_ES |
dc.subject | Gold | es_ES |
dc.subject | Heterogeneous catalysis | es_ES |
dc.subject | Nanoparticles | es_ES |
dc.subject | Transmission electron microscopy | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Influence of the preparation procedure on the catalytic activity of gold supported on diamond nanoparticles for phenol peroxidation | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1002/chem.201100955 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MAT2008-00889/ES/CATALIZADORES NANOESTRUCTURADOS A BASE DE OXIDOS LANTANIDOS PARA LA PRODUCCION DE HIDROGENO Y BIODIESEL/ / | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CTQ2010-18671/ES/APLICACION DE SOLIDOS RETICULARES METAL-ORGANICO MODIFICADOS COMO CATALIZADORES HETEROGENEOS EN PROCESOS DE OXIDACION AEROBICA Y EN REACCIONES PROMOVIDAS POR ACIDOS DE LEWIS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CTQ2009-11583/ES/CTQ2009-11583/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Martín González, R.; Navalón Oltra, S.; Delgado, JJ.; Calvino, JJ.; Alvaro Rodríguez, MM.; García Gómez, H. (2011). Influence of the preparation procedure on the catalytic activity of gold supported on diamond nanoparticles for phenol peroxidation. Chemistry - A European Journal. 17(34):9494-9502. doi:10.1002/chem.201100955 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/chem.201100955 | es_ES |
dc.description.upvformatpinicio | 9494 | es_ES |
dc.description.upvformatpfin | 9502 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 17 | es_ES |
dc.description.issue | 34 | es_ES |
dc.relation.senia | 202443 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Fenton, H. J. H. (1894). LXXIII.—Oxidation of tartaric acid in presence of iron. J. Chem. Soc., Trans., 65(0), 899-910. doi:10.1039/ct8946500899 | es_ES |
dc.description.references | Haber, F., & Weiss, J. (1932). �ber die Katalyse des Hydroperoxydes. Die Naturwissenschaften, 20(51), 948-950. doi:10.1007/bf01504715 | es_ES |
dc.description.references | Pignatello, J. J., Oliveros, E., & MacKay, A. (2006). Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry. Critical Reviews in Environmental Science and Technology, 36(1), 1-84. doi:10.1080/10643380500326564 | es_ES |
dc.description.references | Navalon, S., Alvaro, M., & Garcia, H. (2010). Heterogeneous Fenton catalysts based on clays, silicas and zeolites. Applied Catalysis B: Environmental, 99(1-2), 1-26. doi:10.1016/j.apcatb.2010.07.006 | es_ES |
dc.description.references | Han, Y.-F., Phonthammachai, N., Ramesh, K., Zhong, Z., & White, T. (2008). Removing Organic Compounds from Aqueous Medium via Wet Peroxidation by Gold Catalysts. Environmental Science & Technology, 42(3), 908-912. doi:10.1021/es071124f | es_ES |
dc.description.references | Navalon, S., Martin, R., Alvaro, M., & Garcia, H. (2010). Gold on Diamond Nanoparticles as a Highly Efficient Fenton Catalyst. Angewandte Chemie, 122(45), 8581-8585. doi:10.1002/ange.201003216 | es_ES |
dc.description.references | Navalon, S., Martin, R., Alvaro, M., & Garcia, H. (2010). Gold on Diamond Nanoparticles as a Highly Efficient Fenton Catalyst. Angewandte Chemie International Edition, 49(45), 8403-8407. doi:10.1002/anie.201003216 | es_ES |
dc.description.references | Chen, P. ., Ding, Y. ., Chen, Q., Huang, F. ., & Yun, S. . (2000). Spherical nanometer-sized diamond obtained from detonation. Diamond and Related Materials, 9(9-10), 1722-1725. doi:10.1016/s0925-9635(00)00306-x | es_ES |
dc.description.references | HARUTA, M. (1989). Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. Journal of Catalysis, 115(2), 301-309. doi:10.1016/0021-9517(89)90034-1 | es_ES |
dc.description.references | Navalon, S., Martin, R., Alvaro, M., & Garcia, H. (2011). Sunlight-Assisted Fenton Reaction Catalyzed by Gold Supported on Diamond Nanoparticles as Pretreatment for Biological Degradation of Aqueous Phenol Solutions. ChemSusChem, 4(5), 650-657. doi:10.1002/cssc.201000453 | es_ES |
dc.description.references | Haruta, M. (1997). Size- and support-dependency in the catalysis of gold. Catalysis Today, 36(1), 153-166. doi:10.1016/s0920-5861(96)00208-8 | es_ES |
dc.description.references | Corma, A., & Garcia, H. (2008). Supported gold nanoparticles as catalysts for organic reactions. Chemical Society Reviews, 37(9), 2096. doi:10.1039/b707314n | es_ES |
dc.description.references | Abad, A., Corma, A., & García, H. (2007). Catalyst Parameters Determining Activity and Selectivity of Supported Gold Nanoparticles for the Aerobic Oxidation of Alcohols: The Molecular Reaction Mechanism. Chemistry - A European Journal, 14(1), 212-222. doi:10.1002/chem.200701263 | es_ES |
dc.description.references | Martín, R., Heydorn, P. C., Alvaro, M., & Garcia, H. (2009). General Strategy for High-Density Covalent Functionalization of Diamond Nanoparticles Using Fenton Chemistry. Chemistry of Materials, 21(19), 4505-4514. doi:10.1021/cm9012602 | es_ES |
dc.description.references | Martín, R., Álvaro, M., Herance, J. R., & García, H. (2010). Fenton-Treated Functionalized Diamond Nanoparticles as Gene Delivery System. ACS Nano, 4(1), 65-74. doi:10.1021/nn901616c | es_ES |
dc.description.references | Martín, R., Navalon, S., Alvaro, M., & Garcia, H. (2011). Optimized water treatment by combining catalytic Fenton reaction using diamond supported gold and biological degradation. Applied Catalysis B: Environmental, 103(1-2), 246-252. doi:10.1016/j.apcatb.2011.01.035 | es_ES |
dc.description.references | Burkitt, M. J., & Mason, R. P. (1991). Direct evidence for in vivo hydroxyl-radical generation in experimental iron overload: an ESR spin-trapping investigation. Proceedings of the National Academy of Sciences, 88(19), 8440-8444. doi:10.1073/pnas.88.19.8440 | es_ES |
dc.description.references | Liotta, L. F., Gruttadauria, M., Di Carlo, G., Perrini, G., & Librando, V. (2009). Heterogeneous catalytic degradation of phenolic substrates: Catalysts activity. Journal of Hazardous Materials, 162(2-3), 588-606. doi:10.1016/j.jhazmat.2008.05.115 | es_ES |
dc.description.references | Garrido-Ramírez, E. G., Theng, B. K. ., & Mora, M. L. (2010). Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions — A review. Applied Clay Science, 47(3-4), 182-192. doi:10.1016/j.clay.2009.11.044 | es_ES |