- -

Azobenzene polyesters used as gate-like scaffolds in nanoscopic hybrid systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Azobenzene polyesters used as gate-like scaffolds in nanoscopic hybrid systems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bernardos Bau, Andrea es_ES
dc.contributor.author Mondragón Martínez, Laura es_ES
dc.contributor.author Javakhishvili, Irakli es_ES
dc.contributor.author Mas Font, Nuria es_ES
dc.contributor.author De la Torre Paredes, Cristina es_ES
dc.contributor.author Martínez Mañez, Ramón es_ES
dc.contributor.author Sancenón Galarza, Félix es_ES
dc.contributor.author Barat Baviera, José Manuel es_ES
dc.contributor.author Hvilsted, Soren es_ES
dc.contributor.author Orzaez, Mar es_ES
dc.contributor.author Pérez Payá, Enrique es_ES
dc.contributor.author Amorós, Pedro es_ES
dc.date.accessioned 2013-11-19T13:19:35Z
dc.date.issued 2012-10-08
dc.identifier.issn 0947-6539
dc.identifier.uri http://hdl.handle.net/10251/33745
dc.description.abstract The synthesis and characterisation of new capped silica mesoporous nanoparticles for on-command delivery applications is reported. Functional capped hybrid systems consist of MCM-41 nanoparticles functionalised on the external surface with polyesters bearing azobenzene derivatives and rhodamine¿B inside the mesopores. Two solid materials, Rh-PAzo8-S and Rh-PAzo6-S, containing two closely related polymers, PAzo8 and PAzo6, in the pore outlets have been prepared. Materials Rh-PAzo8-S and Rh-PAzo6-S showed an almost zero release in water due to steric hindrance imposed by the presence of anchored bulky polyesters, whereas a large delivery of the cargo was observed in the presence of an esterase enzyme due to the progressive hydrolysis of polyester chains. Moreover, nanoparticles Rh-PAzo8-S and Rh-PAzo6-S were used to study the controlled release of the dye in intracellular media. Nanoparticles were not toxic for HeLa cells and endocytosis-mediated cell internalisation was confirmed by confocal microscopy. Furthermore, the possible use of capped materials as a drug-delivery system was demonstrated by the preparation of a new mesoporous silica nanoparticle functionalised with PAzo6 and loaded with the cytotoxic drug camptothecin (CPT-PAzo6-S). Following cell internalisation and lysosome resident enzyme-dependent gate opening, CPT-PAzo6-S induced CPT-dependent cell death in HeLa cells. es_ES
dc.description.sponsorship We thank the Spanish Government (projects MAT2009-14564-C04, CTQ2007-64735-AR07 and SAF2010-15512) and the Generalitat Valencia (projects PROMETEO/2009/016 and PROMETEO/2010/005) for support. A. B. is grateful to the Universidad Politecnica de Valencia for an FPI grant. L. M. thanks the Generalitat Valenciana for the Santiago Grisolia Fellowship she received and the VALI+D postdoctoral contract. We thank the CIPF confocal microscopy service for its technical support. en_EN
dc.format.extent 11 es_ES
dc.language Inglés es_ES
dc.publisher Wiley-VCH Verlag es_ES
dc.relation.ispartof Chemistry - A European Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Azo compounds es_ES
dc.subject Drug delivery es_ES
dc.subject Enzymes es_ES
dc.subject Mesoporous materials es_ES
dc.subject Polyesters es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Azobenzene polyesters used as gate-like scaffolds in nanoscopic hybrid systems es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/chem.201200787
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CTQ2007-64735/ES/ESTRATEGIAS PARA EL DESARROLLO DE MICROSISTEMAS ANALITICOS DE BARRIDO BASADOS EN RECEPTORES BIOMOLECULARES Y SU APLICACION A LAS CIENCIAS DE LA VIDA/ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO09%2F2009%2F016/ES/Ayuda prometeo 2009 para el grupo de diseño y desarrollo de sensores/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO%2F2010%2F005/ES/PROMETEO%2F2010%2F005/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//SAF2010-15512/ES/MECANISMOS MOLECULARES DE MODULADORES DE APOPTOSIS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2009-14564-C04-04/ES/Nanomateriales Mesoporosos Y Particulados Para El Diseño De Sistemas Sensores, Remediacion Y Aplicaciones Relacionadas Con La Energia/ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2009-14564-C04-01/ES/Nanomateriales Hibridos Para El Desarrollo De "Puertas Moleculares" De Aplicacion En Procesos De Reconocimiento Y Terapeutica Y Para La Deteccion De Explosivos./ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Bernardos Bau, A.; Mondragón Martínez, L.; Javakhishvili, I.; Mas Font, N.; De La Torre Paredes, C.; Martínez Máñez, R.; Sancenón Galarza, F.... (2012). Azobenzene polyesters used as gate-like scaffolds in nanoscopic hybrid systems. Chemistry - A European Journal. 18(41):13068-13078. doi:10.1002/chem.201200787 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://onlinelibrary.wiley.com/doi/10.1002/chem.201200787/pdf es_ES
dc.description.upvformatpinicio 13068 es_ES
dc.description.upvformatpfin 13078 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 18 es_ES
dc.description.issue 41 es_ES
dc.relation.senia 230312
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Martínez-Máñez, R., & Sancenón, F. (2006). Chemodosimeters and 3D inorganic functionalised hosts for the fluoro-chromogenic sensing of anions. Coordination Chemistry Reviews, 250(23-24), 3081-3093. doi:10.1016/j.ccr.2006.04.016 es_ES
dc.description.references Ariga, K., Hill, J. P., Lee, M. V., Vinu, A., Charvet, R., & Acharya, S. (2008). Challenges and breakthroughs in recent research on self-assembly. Science and Technology of Advanced Materials, 9(1), 014109. doi:10.1088/1468-6996/9/1/014109 es_ES
dc.description.references Mal, N. K., Fujiwara, M., & Tanaka, Y. (2003). Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature, 421(6921), 350-353. doi:10.1038/nature01362 es_ES
dc.description.references Mal, N. K., Fujiwara, M., Tanaka, Y., Taguchi, T., & Matsukata, M. (2003). Photo-Switched Storage and Release of Guest Molecules in the Pore Void of Coumarin-Modified MCM-41. Chemistry of Materials, 15(17), 3385-3394. doi:10.1021/cm0343296 es_ES
dc.description.references Zhu, Y., & Fujiwara, M. (2007). Installing Dynamic Molecular Photomechanics in Mesopores: A Multifunctional Controlled-Release Nanosystem. Angewandte Chemie, 119(13), 2291-2294. doi:10.1002/ange.200604850 es_ES
dc.description.references Zhu, Y., & Fujiwara, M. (2007). Installing Dynamic Molecular Photomechanics in Mesopores: A Multifunctional Controlled-Release Nanosystem. Angewandte Chemie International Edition, 46(13), 2241-2244. doi:10.1002/anie.200604850 es_ES
dc.description.references Fujiwara, M., Terashima, S., Endo, Y., Shiokawa, K., & Ohue, H. (2006). Switching catalytic reaction conducted in pore void of mesoporous material by redox gate control. Chemical Communications, (44), 4635. doi:10.1039/b610444d es_ES
dc.description.references Trewyn, B. G., Slowing, I. I., Giri, S., Chen, H.-T., & Lin, V. S.-Y. (2007). Synthesis and Functionalization of a Mesoporous Silica Nanoparticle Based on the Sol–Gel Process and Applications in Controlled Release. Accounts of Chemical Research, 40(9), 846-853. doi:10.1021/ar600032u es_ES
dc.description.references Torney, F., Trewyn, B. G., Lin, V. S.-Y., & Wang, K. (2007). Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nature Nanotechnology, 2(5), 295-300. doi:10.1038/nnano.2007.108 es_ES
dc.description.references Radu, D. R., Lai, C.-Y., Jeftinija, K., Rowe, E. W., Jeftinija, S., & Lin, V. S.-Y. (2004). A Polyamidoamine Dendrimer-Capped Mesoporous Silica Nanosphere-Based Gene Transfection Reagent. Journal of the American Chemical Society, 126(41), 13216-13217. doi:10.1021/ja046275m es_ES
dc.description.references Giri, S., Trewyn, B. G., Stellmaker, M. P., & Lin, V. S.-Y. (2005). Stimuli-Responsive Controlled-Release Delivery System Based on Mesoporous Silica Nanorods Capped with Magnetic Nanoparticles. Angewandte Chemie, 117(32), 5166-5172. doi:10.1002/ange.200501819 es_ES
dc.description.references Giri, S., Trewyn, B. G., Stellmaker, M. P., & Lin, V. S.-Y. (2005). Stimuli-Responsive Controlled-Release Delivery System Based on Mesoporous Silica Nanorods Capped with Magnetic Nanoparticles. Angewandte Chemie International Edition, 44(32), 5038-5044. doi:10.1002/anie.200501819 es_ES
dc.description.references Lai, C.-Y., Trewyn, B. G., Jeftinija, D. M., Jeftinija, K., Xu, S., Jeftinija, S., & Lin, V. S.-Y. (2003). A Mesoporous Silica Nanosphere-Based Carrier System with Chemically Removable CdS Nanoparticle Caps for Stimuli-Responsive Controlled Release of Neurotransmitters and Drug Molecules. Journal of the American Chemical Society, 125(15), 4451-4459. doi:10.1021/ja028650l es_ES
dc.description.references Hernandez, R., Tseng, H.-R., Wong, J. W., Stoddart, J. F., & Zink, J. I. (2004). An Operational Supramolecular Nanovalve. Journal of the American Chemical Society, 126(11), 3370-3371. doi:10.1021/ja039424u es_ES
dc.description.references Nguyen, T. D., Tseng, H.-R., Celestre, P. C., Flood, A. H., Liu, Y., Stoddart, J. F., & Zink, J. I. (2005). A reversible molecular valve. Proceedings of the National Academy of Sciences, 102(29), 10029-10034. doi:10.1073/pnas.0504109102 es_ES
dc.description.references Angelos, S., Liong, M., Choi, E., & Zink, J. I. (2008). Mesoporous silicate materials as substrates for molecular machines and drug delivery. Chemical Engineering Journal, 137(1), 4-13. doi:10.1016/j.cej.2007.07.074 es_ES
dc.description.references Nguyen, T. D., Leung, K. C.-F., Liong, M., Pentecost, C. D., Stoddart, J. F., & Zink, J. I. (2006). Construction of a pH-Driven Supramolecular Nanovalve. Organic Letters, 8(15), 3363-3366. doi:10.1021/ol0612509 es_ES
dc.description.references Leung, K. C.-F., Nguyen, T. D., Stoddart, J. F., & Zink, J. I. (2006). Supramolecular Nanovalves Controlled by Proton Abstraction and Competitive Binding. Chemistry of Materials, 18(25), 5919-5928. doi:10.1021/cm061682d es_ES
dc.description.references Casasús, R., Marcos, M. D., Martínez-Máñez, R., Ros-Lis, J. V., Soto, J., Villaescusa, L. A., … Latorre, J. (2004). Toward the Development of Ionically Controlled Nanoscopic Molecular Gates. Journal of the American Chemical Society, 126(28), 8612-8613. doi:10.1021/ja048095i es_ES
dc.description.references Casasús, R., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., & Amorós, P. (2006). New Methods for Anion Recognition and Signaling Using Nanoscopic Gatelike Scaffoldings. Angewandte Chemie, 118(40), 6813-6816. doi:10.1002/ange.200602045 es_ES
dc.description.references Casasús, R., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., & Amorós, P. (2006). New Methods for Anion Recognition and Signaling Using Nanoscopic Gatelike Scaffoldings. Angewandte Chemie International Edition, 45(40), 6661-6664. doi:10.1002/anie.200602045 es_ES
dc.description.references Casasús, R., Climent, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Ruiz, E. (2008). Dual Aperture Control on pH- and Anion-Driven Supramolecular Nanoscopic Hybrid Gate-like Ensembles. Journal of the American Chemical Society, 130(6), 1903-1917. doi:10.1021/ja0756772 es_ES
dc.description.references Bernardos, A., Aznar, E., Coll, C., Martínez-Mañez, R., Barat, J. M., Marcos, M. D., … Soto, J. (2008). Controlled release of vitamin B2 using mesoporous materials functionalized with amine-bearing gate-like scaffoldings. Journal of Controlled Release, 131(3), 181-189. doi:10.1016/j.jconrel.2008.07.037 es_ES
dc.description.references Aznar, E., Martínez-Máñez, R., & Sancenón, F. (2009). Controlled release using mesoporous materials containing gate-like scaffoldings. Expert Opinion on Drug Delivery, 6(6), 643-655. doi:10.1517/17425240902895980 es_ES
dc.description.references Aznar, E., Casasús, R., García-Acosta, B., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Amorós, P. (2007). Photochemical and Chemical Two-Channel Control of Functional Nanogated Hybrid Architectures. Advanced Materials, 19(17), 2228-2231. doi:10.1002/adma.200601958 es_ES
dc.description.references Coll, C., Casasús, R., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Amorós, P. (2007). Nanoscopic hybrid systems with a polarity-controlled gate-like scaffolding for the colorimetric signalling of long-chain carboxylates. Chem. Commun., (19), 1957-1959. doi:10.1039/b617703d es_ES
dc.description.references Aznar, E., Coll, C., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Ruiz, E. (2009). Borate-Driven Gatelike Scaffolding Using Mesoporous Materials Functionalised with Saccharides. Chemistry - A European Journal, 15(28), 6877-6888. doi:10.1002/chem.200900090 es_ES
dc.description.references Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., Amorós, P., & Guillem, C. (2009). pH- and Photo-Switched Release of Guest Molecules from Mesoporous Silica Supports. Journal of the American Chemical Society, 131(19), 6833-6843. doi:10.1021/ja810011p es_ES
dc.description.references Park, C., Lee, K., & Kim, C. (2009). Photoresponsive Cyclodextrin-Covered Nanocontainers and Their Sol-Gel Transition Induced by Molecular Recognition. Angewandte Chemie, 121(7), 1301-1304. doi:10.1002/ange.200803880 es_ES
dc.description.references Park, C., Lee, K., & Kim, C. (2009). Photoresponsive Cyclodextrin-Covered Nanocontainers and Their Sol-Gel Transition Induced by Molecular Recognition. Angewandte Chemie International Edition, 48(7), 1275-1278. doi:10.1002/anie.200803880 es_ES
dc.description.references Liu, N., Chen, Z., Dunphy, D. R., Jiang, Y.-B., Assink, R. A., & Brinker, C. J. (2003). Angewandte Chemie, 115(15), 1773-1776. doi:10.1002/ange.200250189 es_ES
dc.description.references Liu, N., Chen, Z., Dunphy, D. R., Jiang, Y.-B., Assink, R. A., & Brinker, C. J. (2003). Photoresponsive Nanocomposite Formed by Self-Assembly of an Azobenzene-Modified Silane. Angewandte Chemie International Edition, 42(15), 1731-1734. doi:10.1002/anie.200250189 es_ES
dc.description.references Lin, Q., Huang, Q., Li, C., Bao, C., Liu, Z., Li, F., & Zhu, L. (2010). Anticancer Drug Release from a Mesoporous Silica Based Nanophotocage Regulated by Either a One- or Two-Photon Process. Journal of the American Chemical Society, 132(31), 10645-10647. doi:10.1021/ja103415t es_ES
dc.description.references Descalzo, A. B., Martínez-Máñez, R., Sancenón, F., Hoffmann, K., & Rurack, K. (2006). Die supramolekulare Chemie organisch-anorganischer Hybrid-Nanomaterialien. Angewandte Chemie, 118(36), 6068-6093. doi:10.1002/ange.200600734 es_ES
dc.description.references Descalzo, A. B., Martínez-Máñez, R., Sancenón, F., Hoffmann, K., & Rurack, K. (2006). The Supramolecular Chemistry of Organic–Inorganic Hybrid Materials. Angewandte Chemie International Edition, 45(36), 5924-5948. doi:10.1002/anie.200600734 es_ES
dc.description.references ARIGA, K., VINU, A., HILL, J., & MORI, T. (2007). Coordination chemistry and supramolecular chemistry in mesoporous nanospace. Coordination Chemistry Reviews, 251(21-24), 2562-2591. doi:10.1016/j.ccr.2007.02.024 es_ES
dc.description.references Trewyn, B. G., Giri, S., Slowing, I. I., & Lin, V. S.-Y. (2007). Mesoporous silica nanoparticle based controlled release, drug delivery, and biosensor systems. Chemical Communications, (31), 3236. doi:10.1039/b701744h es_ES
dc.description.references Climent, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., Maquieira, A., & Amorós, P. (2010). Controlled Delivery Using Oligonucleotide-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie, 122(40), 7439-7441. doi:10.1002/ange.201001847 es_ES
dc.description.references Climent, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., Maquieira, A., & Amorós, P. (2010). Controlled Delivery Using Oligonucleotide-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 49(40), 7281-7283. doi:10.1002/anie.201001847 es_ES
dc.description.references Climent, E., Bernardos, A., Martínez-Máñez, R., Maquieira, A., Marcos, M. D., Pastor-Navarro, N., … Amorós, P. (2009). Controlled Delivery Systems Using Antibody-Capped Mesoporous Nanocontainers. Journal of the American Chemical Society, 131(39), 14075-14080. doi:10.1021/ja904456d es_ES
dc.description.references Bernardos, A., Mondragón, L., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Amorós, P. (2010). Enzyme-Responsive Intracellular Controlled Release Using Nanometric Silica Mesoporous Supports Capped with «Saccharides». ACS Nano, 4(11), 6353-6368. doi:10.1021/nn101499d es_ES
dc.description.references Hoste, K., De Winne, K., & Schacht, E. (2004). Polymeric prodrugs. International Journal of Pharmaceutics, 277(1-2), 119-131. doi:10.1016/j.ijpharm.2003.07.016 es_ES
dc.description.references Liu, S., Maheshwari, R., & Kiick, K. L. (2009). Polymer-Based Therapeutics. Macromolecules, 42(1), 3-13. doi:10.1021/ma801782q es_ES
dc.description.references Traitel, T., Goldbart, R., & Kost, J. (2008). Smart polymers for responsive drug-delivery systems. Journal of Biomaterials Science, Polymer Edition, 19(6), 755-767. doi:10.1163/156856208784522065 es_ES
dc.description.references Puoci, F., Iemma, F., & Picci, N. (2008). Stimuli-Responsive Molecularly Imprinted Polymers for Drug Delivery: A Review. Current Drug Delivery, 5(2), 85-96. doi:10.2174/156720108783954888 es_ES
dc.description.references Siepmann, F., Siepmann, J., Walther, M., MacRae, R. J., & Bodmeier, R. (2008). Polymer blends for controlled release coatings. Journal of Controlled Release, 125(1), 1-15. doi:10.1016/j.jconrel.2007.09.012 es_ES
dc.description.references HARRISON, K. (2007). Introduction to polymeric drug delivery systems. Biomedical Polymers, 33-56. doi:10.1533/9781845693640.33 es_ES
dc.description.references Nair, L. S., & Laurencin, C. T. (2007). Biodegradable polymers as biomaterials. Progress in Polymer Science, 32(8-9), 762-798. doi:10.1016/j.progpolymsci.2007.05.017 es_ES
dc.description.references Yan, B., Kai, Q., & Wang, X.-L. (2011). Photofunctional Eu3+/Tb3+ hybrid material with inorganic silica covalently linking polymer chain through their double functionalization. Inorganica Chimica Acta, 376(1), 302-309. doi:10.1016/j.ica.2011.06.036 es_ES
dc.description.references Zhang, K., Wu, W., Guo, K., Chen, J., & Zhang, P. (2010). Synthesis of Temperature-Responsive Poly(N-isopropyl acrylamide)/Poly(methyl methacrylate)/Silica Hybrid Capsules from Inverse Pickering Emulsion Polymerization and Their Application in Controlled Drug Release. Langmuir, 26(11), 7971-7980. doi:10.1021/la904841m es_ES
dc.description.references Fu, Q., Rao, G. V. R., Ista, L. K., Wu, Y., Andrzejewski, B. P., Sklar, L. A., … López, G. P. (2003). Control of Molecular Transport Through Stimuli-Responsive Ordered Mesoporous Materials. Advanced Materials, 15(15), 1262-1266. doi:10.1002/adma.200305165 es_ES
dc.description.references Fu, Q., Rama Rao, G. V., Ward, T. L., Lu, Y., & Lopez, G. P. (2007). Thermoresponsive Transport through Ordered Mesoporous Silica/PNIPAAm Copolymer Membranes and Microspheres†. Langmuir, 23(1), 170-174. doi:10.1021/la062770f es_ES
dc.description.references You, Y.-Z., Kalebaila, K. K., Brock, S. L., & Oupický, D. (2008). Temperature-Controlled Uptake and Release in PNIPAM-Modified Porous Silica Nanoparticles. Chemistry of Materials, 20(10), 3354-3359. doi:10.1021/cm703363w es_ES
dc.description.references Zhou, Z., Zhu, S., & Zhang, D. (2007). Grafting of thermo-responsive polymer inside mesoporous silica with large pore size using ATRP and investigation of its use in drug release. Journal of Materials Chemistry, 17(23), 2428. doi:10.1039/b618834f es_ES
dc.description.references Zhu, S., Zhou, Z., Zhang, D., Jin, C., & Li, Z. (2007). Design and synthesis of delivery system based on SBA-15 with magnetic particles formed in situ and thermo-sensitive PNIPA as controlled switch. Microporous and Mesoporous Materials, 106(1-3), 56-61. doi:10.1016/j.micromeso.2007.02.027 es_ES
dc.description.references Zhu, Y., Kaskel, S., Ikoma, T., & Hanagata, N. (2009). Magnetic SBA-15/poly(N-isopropylacrylamide) composite: Preparation, characterization and temperature-responsive drug release property. Microporous and Mesoporous Materials, 123(1-3), 107-112. doi:10.1016/j.micromeso.2009.03.031 es_ES
dc.description.references Liu, C., Guo, J., Yang, W., Hu, J., Wang, C., & Fu, S. (2009). Magnetic mesoporous silica microspheres with thermo-sensitive polymer shell for controlled drug release. Journal of Materials Chemistry, 19(27), 4764. doi:10.1039/b902985k es_ES
dc.description.references Lai, J., Mu, X., Xu, Y., Wu, X., Wu, C., Li, C., … Zhao, Y. (2010). Light-responsive nanogated ensemble based on polymer grafted mesoporous silica hybrid nanoparticles. Chemical Communications, 46(39), 7370. doi:10.1039/c0cc02914a es_ES
dc.description.references Copello, G. J., Mebert, A. M., Raineri, M., Pesenti, M. P., & Diaz, L. E. (2011). Removal of dyes from water using chitosan hydrogel/SiO2 and chitin hydrogel/SiO2 hybrid materials obtained by the sol–gel method. Journal of Hazardous Materials, 186(1), 932-939. doi:10.1016/j.jhazmat.2010.11.097 es_ES
dc.description.references Song, S.-W., Hidajat, K., & Kawi, S. (2007). pH-Controllable drug release using hydrogel encapsulated mesoporous silica. Chemical Communications, (42), 4396. doi:10.1039/b707626f es_ES
dc.description.references Hong, C.-Y., Li, X., & Pan, C.-Y. (2009). Fabrication of smart nanocontainers with a mesoporous core and a pH-responsive shell for controlled uptake and release. Journal of Materials Chemistry, 19(29), 5155. doi:10.1039/b820534e es_ES
dc.description.references Liu, R., Zhao, X., Wu, T., & Feng, P. (2008). Tunable Redox-Responsive Hybrid Nanogated Ensembles. Journal of the American Chemical Society, 130(44), 14418-14419. doi:10.1021/ja8060886 es_ES
dc.description.references Patel, K., Angelos, S., Dichtel, W. R., Coskun, A., Yang, Y.-W., Zink, J. I., & Stoddart, J. F. (2008). Enzyme-Responsive Snap-Top Covered Silica Nanocontainers. Journal of the American Chemical Society, 130(8), 2382-2383. doi:10.1021/ja0772086 es_ES
dc.description.references Bernardos, A., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Amorós, P. (2009). Enzyme-Responsive Controlled Release Using Mesoporous Silica Supports Capped with Lactose. Angewandte Chemie, 121(32), 5998-6001. doi:10.1002/ange.200900880 es_ES
dc.description.references Bernardos, A., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Amorós, P. (2009). Enzyme-Responsive Controlled Release Using Mesoporous Silica Supports Capped with Lactose. Angewandte Chemie International Edition, 48(32), 5884-5887. doi:10.1002/anie.200900880 es_ES
dc.description.references Agostini, A., Mondragón, L., Coll, C., Aznar, E., Marcos, M. D., Martínez-Máñez, R., … Amorós, P. (2012). Dual Enzyme-Triggered Controlled Release on Capped Nanometric Silica Mesoporous Supports. ChemistryOpen, 1(1), 17-20. doi:10.1002/open.201200003 es_ES
dc.description.references Schlossbauer, A., Kecht, J., & Bein, T. (2009). Biotin-Avidin as a Protease-Responsive Cap System for Controlled Guest Release from Colloidal Mesoporous Silica. Angewandte Chemie, 121(17), 3138-3141. doi:10.1002/ange.200805818 es_ES
dc.description.references Schlossbauer, A., Kecht, J., & Bein, T. (2009). Biotin-Avidin as a Protease-Responsive Cap System for Controlled Guest Release from Colloidal Mesoporous Silica. Angewandte Chemie International Edition, 48(17), 3092-3095. doi:10.1002/anie.200805818 es_ES
dc.description.references Park, C., Kim, H., Kim, S., & Kim, C. (2009). Enzyme Responsive Nanocontainers with Cyclodextrin Gatekeepers and Synergistic Effects in Release of Guests. Journal of the American Chemical Society, 131(46), 16614-16615. doi:10.1021/ja9061085 es_ES
dc.description.references Thornton, P. D., & Heise, A. (2010). Highly Specific Dual Enzyme-Mediated Payload Release from Peptide-Coated Silica Particles. Journal of the American Chemical Society, 132(6), 2024-2028. doi:10.1021/ja9094439 es_ES
dc.description.references Bones, J., Mittermayr, S., McLoughlin, N., Hilliard, M., Wynne, K., Johnson, G. R., … Rudd, P. M. (2011). Identification ofN-Glycans Displaying Mannose-6-Phosphate and their Site of Attachment on Therapeutic Enzymes for Lysosomal Storage Disorder Treatment. Analytical Chemistry, 83(13), 5344-5352. doi:10.1021/ac2007784 es_ES
dc.description.references El Haskouri, J., Zárate, D. O. de, Guillem, C., Latorre, J., Caldés, M., Beltrán, A., … Amorós, P. (2002). Silica-based powders and monoliths with bimodal pore systemsElectronic supplementary information (ESI) available: UV–Vis spectrum of sample 3. See http://www.rsc.org/suppdata/cc/b1/b110883b/. Chemical Communications, (4), 330-331. doi:10.1039/b110883b es_ES
dc.description.references Comes, M., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., Villaescusa, L. A., … Beltrán, D. (2004). Chromogenic Discrimination of Primary Aliphatic Amines in Water with Functionalized Mesoporous Silica. Advanced Materials, 16(20), 1783-1786. doi:10.1002/adma.200400143 es_ES
dc.description.references Comes, M., Rodríguez-López, G., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Beltrán, D. (2005). Host Solids Containing Nanoscale Anion-Binding Pockets and Their Use in Selective Sensing Displacement Assays. Angewandte Chemie, 117(19), 2978-2982. doi:10.1002/ange.200461511 es_ES
dc.description.references Comes, M., Rodríguez-López, G., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Beltrán, D. (2005). Host Solids Containing Nanoscale Anion-Binding Pockets and Their Use in Selective Sensing Displacement Assays. Angewandte Chemie International Edition, 44(19), 2918-2922. doi:10.1002/anie.200461511 es_ES
dc.description.references Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712. doi:10.1038/359710a0 es_ES
dc.description.references Rámila, A., Muñoz, B., Pérez-Pariente, J., & Vallet-Regí, M. (2003). Journal of Sol-Gel Science and Technology, 26(1/3), 1199-1202. doi:10.1023/a:1020764319963 es_ES
dc.description.references Vallet-Regí, M. (2006). Ordered Mesoporous Materials in the Context of Drug Delivery Systems and Bone Tissue Engineering. Chemistry - A European Journal, 12(23), 5934-5943. doi:10.1002/chem.200600226 es_ES
dc.description.references Hvilsted, S., Andruzzi, F., Cerrai, P., & Tricoli, M. (1991). Preparation and characterization of aliphatic diphenyl esters intended as precursors for polyesters. Polymer, 32(1), 127-133. doi:10.1016/0032-3861(91)90572-z es_ES
dc.description.references Hvilsted, S., Andruzzi, F., & Ramanujam, P. S. (1992). Side-chain liquid-crystalline polyesters for optical information storage. Optics Letters, 17(17), 1234. doi:10.1364/ol.17.001234 es_ES
dc.description.references Zebger, I., Kulinna, C., Siesler, H. W., Andruzzi, F., Pedersen, M., Ramanujam, P. S., & Hvilsted, Sør. (1995). The influence of substituents on the orientational behaviour of novel azobenzene side-chain polyesters. Macromolecular Symposia, 94(1), 159-170. doi:10.1002/masy.19950940114 es_ES
dc.description.references Ramanujam, P. S., Hvilsted, S., & Andruzzi, F. (1993). Novel biphotonic holographic storage in a side‐chain liquid crystalline polyester. Applied Physics Letters, 62(10), 1041-1043. doi:10.1063/1.108788 es_ES
dc.description.references Hvilsted, S., Andruzzi, F., Kulinna, C., Siesler, H. W., & Ramanujam, P. S. (1995). Novel Side-Chain Liquid Crystalline Polyester Architecture for Reversible Optical Storage. Macromolecules, 28(7), 2172-2183. doi:10.1021/ma00111a011 es_ES
dc.description.references Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, 73(1), 373-380. doi:10.1021/ja01145a126 es_ES
dc.description.references Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60(2), 309-319. doi:10.1021/ja01269a023 es_ES
dc.description.references Sinha, V. R., & Kumria, R. (2001). Pharmaceutical Research, 18(5), 557-564. doi:10.1023/a:1011033121528 es_ES
dc.description.references Rosenholm, J. M., Meinander, A., Peuhu, E., Niemi, R., Eriksson, J. E., Sahlgren, C., & Lindén, M. (2008). Targeting of Porous Hybrid Silica Nanoparticles to Cancer Cells. ACS Nano, 3(1), 197-206. doi:10.1021/nn800781r es_ES
dc.description.references Xia, T., Kovochich, M., Liong, M., Meng, H., Kabehie, S., George, S., … Nel, A. E. (2009). Polyethyleneimine Coating Enhances the Cellular Uptake of Mesoporous Silica Nanoparticles and Allows Safe Delivery of siRNA and DNA Constructs. ACS Nano, 3(10), 3273-3286. doi:10.1021/nn900918w es_ES
dc.description.references Rosenholm, J. M., Peuhu, E., Eriksson, J. E., Sahlgren, C., & Lindén, M. (2009). Targeted Intracellular Delivery of Hydrophobic Agents using Mesoporous Hybrid Silica Nanoparticles as Carrier Systems. Nano Letters, 9(9), 3308-3311. doi:10.1021/nl901589y es_ES
dc.description.references Slowing, I., Trewyn, B. G., & Lin, V. S.-Y. (2006). Effect of Surface Functionalization of MCM-41-Type Mesoporous Silica Nanoparticles on the Endocytosis by Human Cancer Cells. Journal of the American Chemical Society, 128(46), 14792-14793. doi:10.1021/ja0645943 es_ES
dc.description.references SLOWING, I., VIVEROESCOTO, J., WU, C., & LIN, V. (2008). Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers☆. Advanced Drug Delivery Reviews, 60(11), 1278-1288. doi:10.1016/j.addr.2008.03.012 es_ES
dc.description.references Wu, S.-H., Hung, Y., & Mou, C.-Y. (2011). Mesoporous silica nanoparticles as nanocarriers. Chemical Communications, 47(36), 9972. doi:10.1039/c1cc11760b es_ES
dc.description.references Liong, M., Angelos, S., Choi, E., Patel, K., Stoddart, J. F., & Zink, J. I. (2009). Mesostructured multifunctional nanoparticles for imaging and drug delivery. Journal of Materials Chemistry, 19(35), 6251. doi:10.1039/b902462j es_ES
dc.description.references Fisichella, M., Dabboue, H., Bhattacharyya, S., Saboungi, M.-L., Salvetat, J.-P., Hevor, T., & Guerin, M. (2009). Mesoporous silica nanoparticles enhance MTT formazan exocytosis in HeLa cells and astrocytes. Toxicology in Vitro, 23(4), 697-703. doi:10.1016/j.tiv.2009.02.007 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem