Mostrar el registro sencillo del ítem
dc.contributor.author | España, J.M. | es_ES |
dc.contributor.author | Samper Madrigal, María Dolores | es_ES |
dc.contributor.author | Fages Santana, Eduardo | es_ES |
dc.contributor.author | Sánchez-Nacher, Lourdes | es_ES |
dc.contributor.author | Balart Gimeno, Rafael Antonio | es_ES |
dc.date.accessioned | 2013-11-22T12:41:49Z | |
dc.date.issued | 2013-03 | |
dc.identifier.issn | 0272-8397 | |
dc.identifier.uri | http://hdl.handle.net/10251/33928 | |
dc.description.abstract | [EN] In recent years, it has been detected an increased interest in the development of materials from renewable resources. This trend has been intensified in the industrial sector where significant efforts have been made in this field in order to adapt these natural fibers to conventional industrial processes and applications. As a result, research has been done into developing new thermoplastic matrices which are compatible with this type of reinforcing fibers. This study evaluates the influence of different coupling agents based on silanes, on the mechanical properties of composite laminates made from a biobased epoxy resin matrix and basalt fabric by using vacuum assisted resin transfer moulding. The curing behavior of the biobased epoxy resin was evaluated by differential scanning calorimetry (DSC), gel point determination, and ionic conductivity. The evaluation of mechanical properties was done by tensile, flexural, impact, and hardness tests. Compatibility between basalt fibers and epoxy resin generally has managed to increase through the addition of silanes, after the addition of these, their mechanical properties are substantially improved compared to the sample without silane treatment, obtaining this way an easily processable material, with good properties and capable of competing with materials with petroleumbased epoxy resins. | es_ES |
dc.description.sponsorship | Contract grant sponsors: Ministerio de Ciencia e Innovacion (part of the project IPT-310000-2010-037, "ECOTEXCOMP: Research and development of textile structures useful as reinforcement of composite materials with marked ecological character" with an aid of 189540.20 euros, within the "Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica 2008-2011"), European Union through FEDER funds, Technology Fund 2007-2013, Operational Programme on R+D+i for and on behalf of the companies, Generalitat Valenciana Ref.: ACOMP/2012/087, Universitat Politecnica de Valencia (UPV; FPI-UPV grant, to J.M.E. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley-Blackwell | es_ES |
dc.relation.ispartof | Polymer Composites | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.subject.classification | INGENIERIA MECANICA | es_ES |
dc.title | Investigation of the Effect of Different Silane Coupling Agents on Mechanical Performance of Basalt Fiber Composite Laminates with Biobased Epoxy Matrices | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1002/pc.22421 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//IPT-310000-2010-037/ES/ECOTEXCOMP: Investigación y desarrollo de estructuras textiles aplicables como refuerzo de materiales compuestos de marcado carácter ecológico./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ACOMP%2F2012%2F087/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | España, J.; Samper Madrigal, MD.; Fages Santana, E.; Sánchez-Nacher, L.; Balart Gimeno, RA. (2013). Investigation of the Effect of Different Silane Coupling Agents on Mechanical Performance of Basalt Fiber Composite Laminates with Biobased Epoxy Matrices. Polymer Composites. 34(3):376-381. https://doi.org/10.1002/pc.22421 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://onlinelibrary.wiley.com/doi/10.1002/pc.22421/abstract | es_ES |
dc.description.upvformatpinicio | 376 | es_ES |
dc.description.upvformatpfin | 381 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 34 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.senia | 233375 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.description.references | De Rosa, I. M., Marra, F., Pulci, G., Santulli, C., Sarasini, F., Tirillò, J., & Valente, M. (2011). Post-Impact Mechanical Characterisation of Glass and Basalt Woven Fabric Laminates. Applied Composite Materials, 19(3-4), 475-490. doi:10.1007/s10443-011-9209-8 | es_ES |
dc.description.references | Deák, T., Czigány, T., Maršálková, M., & Militký, J. (2010). Manufacturing and testing of long basalt fiber reinforced thermoplastic matrix composites. Polymer Engineering & Science, 50(12), 2448-2456. doi:10.1002/pen.21765 | es_ES |
dc.description.references | Christian, S. J., & Billington, S. L. (2011). Mechanical response of PHB- and cellulose acetate natural fiber-reinforced composites for construction applications. Composites Part B: Engineering, 42(7), 1920-1928. doi:10.1016/j.compositesb.2011.05.039 | es_ES |
dc.description.references | Fiore, V., Di Bella, G., & Valenza, A. (2011). Glass–basalt/epoxy hybrid composites for marine applications. Materials & Design, 32(4), 2091-2099. doi:10.1016/j.matdes.2010.11.043 | es_ES |
dc.description.references | Lopresto, V., Leone, C., & De Iorio, I. (2011). Mechanical characterisation of basalt fibre reinforced plastic. Composites Part B: Engineering, 42(4), 717-723. doi:10.1016/j.compositesb.2011.01.030 | es_ES |
dc.description.references | Militký, J., Kovačič, V., & Rubnerová, J. (2002). Influence of thermal treatment on tensile failure of basalt fibers. Engineering Fracture Mechanics, 69(9), 1025-1033. doi:10.1016/s0013-7944(01)00119-9 | es_ES |
dc.description.references | Manikandan, V., Winowlin Jappes, J. T., Suresh Kumar, S. M., & Amuthakkannan, P. (2012). Investigation of the effect of surface modifications on the mechanical properties of basalt fibre reinforced polymer composites. Composites Part B: Engineering, 43(2), 812-818. doi:10.1016/j.compositesb.2011.11.009 | es_ES |
dc.description.references | Keith, J. M., Hingst, C. D., Miller, M. G., King, J. A., & Hauser, R. A. (2005). Measuring and predicting in-plane thermal conductivity of carbon-filled nylon 6,6 polymer composites. Polymer Composites, 27(1), 1-7. doi:10.1002/pc.20160 | es_ES |
dc.description.references | De Arcaya, P. A., Retegi, A., Arbelaiz, A., Kenny, J. M., & Mondragon, I. (2009). Mechanical properties of natural fibers/polyamides composites. Polymer Composites, 30(3), 257-264. doi:10.1002/pc.20558 | es_ES |
dc.description.references | De Rosa, I. M., Iannoni, A., Kenny, J. M., Puglia, D., Santulli, C., Sarasini, F., & Terenzi, A. (2011). Poly(lactic acid)/Phormium tenax composites: Morphology and thermo-mechanical behavior. Polymer Composites, 32(9), 1362-1368. doi:10.1002/pc.21159 | es_ES |
dc.description.references | Hodzic, A., Coakley, R., Curro, R., Berndt, C. C., & Shanks, R. A. (2007). Design and Optimization of Biopolyester Bagasse Fiber Composites. Journal of Biobased Materials and Bioenergy, 1(1), 46-55. doi:10.1166/jbmb.2007.005 | es_ES |
dc.description.references | Twite-Kabamba, E., Mechraoui, A., & Rodrigue, D. (2009). Rheological properties of polypropylene/hemp fiber composites. Polymer Composites, 30(10), 1401-1407. doi:10.1002/pc.20704 | es_ES |
dc.description.references | Campaner, P., D’Amico, D., Longo, L., Stifani, C., & Tarzia, A. (2009). Cardanol-based novolac resins as curing agents of epoxy resins. Journal of Applied Polymer Science, 114(6), 3585-3591. doi:10.1002/app.30979 | es_ES |
dc.description.references | Ding, X., Zhou, S., Gu, G., & Wu, L. (2011). Facile fabrication of superhydrophobic polysiloxane/magnetite nanocomposite coatings with electromagnetic shielding property. Journal of Coatings Technology and Research, 8(6), 757-764. doi:10.1007/s11998-011-9358-6 | es_ES |
dc.description.references | Tsujimoto, T., Uyama, H., & Kobayashi, S. (2010). Synthesis of high-performance green nanocomposites from renewable natural oils. Polymer Degradation and Stability, 95(8), 1399-1405. doi:10.1016/j.polymdegradstab.2010.01.016 | es_ES |
dc.description.references | Manthey, N. W., Cardona, F., Aravinthan, T., & Cooney, T. (2011). Cure kinetics of an epoxidized hemp oil based bioresin system. Journal of Applied Polymer Science, 122(1), 444-451. doi:10.1002/app.34086 | es_ES |
dc.description.references | Morye, S. S., & Wool, R. P. (2005). Mechanical properties of glass/flax hybrid composites based on a novel modified soybean oil matrix material. Polymer Composites, 26(4), 407-416. doi:10.1002/pc.20099 | es_ES |
dc.description.references | Mustata, F. (2011). Thermosetting resin compositions based on novolac and modified novolac. Advances in Polymer Technology, 30(3), 219-233. doi:10.1002/adv.20218 | es_ES |
dc.description.references | Mustata, F., Tudorachi, N., & Rosu, D. (2011). Curing and thermal behavior of resin matrix for composites based on epoxidized soybean oil/diglycidyl ether of bisphenol A. Composites Part B: Engineering, 42(7), 1803-1812. doi:10.1016/j.compositesb.2011.07.003 | es_ES |
dc.description.references | Thielemans, W., & Wool, R. P. (2005). Kraft lignin as fiber treatment for natural fiber-reinforced composites. Polymer Composites, 26(5), 695-705. doi:10.1002/pc.20141 | es_ES |
dc.description.references | Park, J.-M., Lee, J.-O., & Park, T.-W. (1996). Improved interfacial shear strength and durability of single carbon fiber reinforced isotactic polypropylene composites using water-dispersible graft copolymer as a coupling agent. Polymer Composites, 17(3), 375-383. doi:10.1002/pc.10624 | es_ES |