- -

Investigation of the Effect of Different Silane Coupling Agents on Mechanical Performance of Basalt Fiber Composite Laminates with Biobased Epoxy Matrices

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Investigation of the Effect of Different Silane Coupling Agents on Mechanical Performance of Basalt Fiber Composite Laminates with Biobased Epoxy Matrices

Show simple item record

Files in this item

dc.contributor.author España, J.M. es_ES
dc.contributor.author Samper Madrigal, María Dolores es_ES
dc.contributor.author Fages Santana, Eduardo es_ES
dc.contributor.author Sánchez-Nacher, Lourdes es_ES
dc.contributor.author Balart Gimeno, Rafael Antonio es_ES
dc.date.accessioned 2013-11-22T12:41:49Z
dc.date.issued 2013-03
dc.identifier.issn 0272-8397
dc.identifier.uri http://hdl.handle.net/10251/33928
dc.description.abstract [EN] In recent years, it has been detected an increased interest in the development of materials from renewable resources. This trend has been intensified in the industrial sector where significant efforts have been made in this field in order to adapt these natural fibers to conventional industrial processes and applications. As a result, research has been done into developing new thermoplastic matrices which are compatible with this type of reinforcing fibers. This study evaluates the influence of different coupling agents based on silanes, on the mechanical properties of composite laminates made from a biobased epoxy resin matrix and basalt fabric by using vacuum assisted resin transfer moulding. The curing behavior of the biobased epoxy resin was evaluated by differential scanning calorimetry (DSC), gel point determination, and ionic conductivity. The evaluation of mechanical properties was done by tensile, flexural, impact, and hardness tests. Compatibility between basalt fibers and epoxy resin generally has managed to increase through the addition of silanes, after the addition of these, their mechanical properties are substantially improved compared to the sample without silane treatment, obtaining this way an easily processable material, with good properties and capable of competing with materials with petroleumbased epoxy resins. es_ES
dc.description.sponsorship Contract grant sponsors: Ministerio de Ciencia e Innovacion (part of the project IPT-310000-2010-037, "ECOTEXCOMP: Research and development of textile structures useful as reinforcement of composite materials with marked ecological character" with an aid of 189540.20 euros, within the "Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica 2008-2011"), European Union through FEDER funds, Technology Fund 2007-2013, Operational Programme on R+D+i for and on behalf of the companies, Generalitat Valenciana Ref.: ACOMP/2012/087, Universitat Politecnica de Valencia (UPV; FPI-UPV grant, to J.M.E. en_EN
dc.language Inglés es_ES
dc.publisher Wiley-Blackwell es_ES
dc.relation.ispartof Polymer Composites es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title Investigation of the Effect of Different Silane Coupling Agents on Mechanical Performance of Basalt Fiber Composite Laminates with Biobased Epoxy Matrices es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/pc.22421
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//IPT-310000-2010-037/ES/ECOTEXCOMP: Investigación y desarrollo de estructuras textiles aplicables como refuerzo de materiales compuestos de marcado carácter ecológico./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACOMP%2F2012%2F087/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation España, J.; Samper Madrigal, MD.; Fages Santana, E.; Sánchez-Nacher, L.; Balart Gimeno, RA. (2013). Investigation of the Effect of Different Silane Coupling Agents on Mechanical Performance of Basalt Fiber Composite Laminates with Biobased Epoxy Matrices. Polymer Composites. 34(3):376-381. https://doi.org/10.1002/pc.22421 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://onlinelibrary.wiley.com/doi/10.1002/pc.22421/abstract es_ES
dc.description.upvformatpinicio 376 es_ES
dc.description.upvformatpfin 381 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 34 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 233375
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references De Rosa, I. M., Marra, F., Pulci, G., Santulli, C., Sarasini, F., Tirillò, J., & Valente, M. (2011). Post-Impact Mechanical Characterisation of Glass and Basalt Woven Fabric Laminates. Applied Composite Materials, 19(3-4), 475-490. doi:10.1007/s10443-011-9209-8 es_ES
dc.description.references Deák, T., Czigány, T., Maršálková, M., & Militký, J. (2010). Manufacturing and testing of long basalt fiber reinforced thermoplastic matrix composites. Polymer Engineering & Science, 50(12), 2448-2456. doi:10.1002/pen.21765 es_ES
dc.description.references Christian, S. J., & Billington, S. L. (2011). Mechanical response of PHB- and cellulose acetate natural fiber-reinforced composites for construction applications. Composites Part B: Engineering, 42(7), 1920-1928. doi:10.1016/j.compositesb.2011.05.039 es_ES
dc.description.references Fiore, V., Di Bella, G., & Valenza, A. (2011). Glass–basalt/epoxy hybrid composites for marine applications. Materials & Design, 32(4), 2091-2099. doi:10.1016/j.matdes.2010.11.043 es_ES
dc.description.references Lopresto, V., Leone, C., & De Iorio, I. (2011). Mechanical characterisation of basalt fibre reinforced plastic. Composites Part B: Engineering, 42(4), 717-723. doi:10.1016/j.compositesb.2011.01.030 es_ES
dc.description.references Militký, J., Kovačič, V., & Rubnerová, J. (2002). Influence of thermal treatment on tensile failure of basalt fibers. Engineering Fracture Mechanics, 69(9), 1025-1033. doi:10.1016/s0013-7944(01)00119-9 es_ES
dc.description.references Manikandan, V., Winowlin Jappes, J. T., Suresh Kumar, S. M., & Amuthakkannan, P. (2012). Investigation of the effect of surface modifications on the mechanical properties of basalt fibre reinforced polymer composites. Composites Part B: Engineering, 43(2), 812-818. doi:10.1016/j.compositesb.2011.11.009 es_ES
dc.description.references Keith, J. M., Hingst, C. D., Miller, M. G., King, J. A., & Hauser, R. A. (2005). Measuring and predicting in-plane thermal conductivity of carbon-filled nylon 6,6 polymer composites. Polymer Composites, 27(1), 1-7. doi:10.1002/pc.20160 es_ES
dc.description.references De Arcaya, P. A., Retegi, A., Arbelaiz, A., Kenny, J. M., & Mondragon, I. (2009). Mechanical properties of natural fibers/polyamides composites. Polymer Composites, 30(3), 257-264. doi:10.1002/pc.20558 es_ES
dc.description.references De Rosa, I. M., Iannoni, A., Kenny, J. M., Puglia, D., Santulli, C., Sarasini, F., & Terenzi, A. (2011). Poly(lactic acid)/Phormium tenax composites: Morphology and thermo-mechanical behavior. Polymer Composites, 32(9), 1362-1368. doi:10.1002/pc.21159 es_ES
dc.description.references Hodzic, A., Coakley, R., Curro, R., Berndt, C. C., & Shanks, R. A. (2007). Design and Optimization of Biopolyester Bagasse Fiber Composites. Journal of Biobased Materials and Bioenergy, 1(1), 46-55. doi:10.1166/jbmb.2007.005 es_ES
dc.description.references Twite-Kabamba, E., Mechraoui, A., & Rodrigue, D. (2009). Rheological properties of polypropylene/hemp fiber composites. Polymer Composites, 30(10), 1401-1407. doi:10.1002/pc.20704 es_ES
dc.description.references Campaner, P., D’Amico, D., Longo, L., Stifani, C., & Tarzia, A. (2009). Cardanol-based novolac resins as curing agents of epoxy resins. Journal of Applied Polymer Science, 114(6), 3585-3591. doi:10.1002/app.30979 es_ES
dc.description.references Ding, X., Zhou, S., Gu, G., & Wu, L. (2011). Facile fabrication of superhydrophobic polysiloxane/magnetite nanocomposite coatings with electromagnetic shielding property. Journal of Coatings Technology and Research, 8(6), 757-764. doi:10.1007/s11998-011-9358-6 es_ES
dc.description.references Tsujimoto, T., Uyama, H., & Kobayashi, S. (2010). Synthesis of high-performance green nanocomposites from renewable natural oils. Polymer Degradation and Stability, 95(8), 1399-1405. doi:10.1016/j.polymdegradstab.2010.01.016 es_ES
dc.description.references Manthey, N. W., Cardona, F., Aravinthan, T., & Cooney, T. (2011). Cure kinetics of an epoxidized hemp oil based bioresin system. Journal of Applied Polymer Science, 122(1), 444-451. doi:10.1002/app.34086 es_ES
dc.description.references Morye, S. S., & Wool, R. P. (2005). Mechanical properties of glass/flax hybrid composites based on a novel modified soybean oil matrix material. Polymer Composites, 26(4), 407-416. doi:10.1002/pc.20099 es_ES
dc.description.references Mustata, F. (2011). Thermosetting resin compositions based on novolac and modified novolac. Advances in Polymer Technology, 30(3), 219-233. doi:10.1002/adv.20218 es_ES
dc.description.references Mustata, F., Tudorachi, N., & Rosu, D. (2011). Curing and thermal behavior of resin matrix for composites based on epoxidized soybean oil/diglycidyl ether of bisphenol A. Composites Part B: Engineering, 42(7), 1803-1812. doi:10.1016/j.compositesb.2011.07.003 es_ES
dc.description.references Thielemans, W., & Wool, R. P. (2005). Kraft lignin as fiber treatment for natural fiber-reinforced composites. Polymer Composites, 26(5), 695-705. doi:10.1002/pc.20141 es_ES
dc.description.references Park, J.-M., Lee, J.-O., & Park, T.-W. (1996). Improved interfacial shear strength and durability of single carbon fiber reinforced isotactic polypropylene composites using water-dispersible graft copolymer as a coupling agent. Polymer Composites, 17(3), 375-383. doi:10.1002/pc.10624 es_ES


This item appears in the following Collection(s)

Show simple item record