Mostrar el registro sencillo del ítem
dc.contributor.author | De Miguel de la Torre, Maykel | es_ES |
dc.contributor.author | Ragon, Florence | es_ES |
dc.contributor.author | Devic, Thomas | es_ES |
dc.contributor.author | Serre, Christian | es_ES |
dc.contributor.author | Horcajada Campos, Patricia | es_ES |
dc.contributor.author | García Gómez, Hermenegildo | es_ES |
dc.date.accessioned | 2013-11-28T11:42:02Z | |
dc.date.issued | 2012-11-12 | |
dc.identifier.issn | 1439-4235 | |
dc.identifier.uri | http://hdl.handle.net/10251/34126 | |
dc.description.abstract | [EN] Herein, we describe the photochemical behavior of the porous metal¿organic framework MIL-125(Ti)-NH2, built up from cyclic Ti8O8(OH)4 oxoclusters and 2-aminoterephthalate ligands. While MIL-125(Ti)-NH2 does not emit upon excitation at 420 nm, laser flash photolyses of dry samples (diffuse reflectance) or aqueous suspensions (transmission) of the solid have allowed detecting a transient characterized by a continuous absorption from 390 to 820 nm decaying in the sub-millisecond timescale, which is quenched by oxygen. This transient has been attributed to the charge-separation state. Firm evidence for this assignment was obtained by lamp irradiation of aqueous suspensions of MIL-125(Ti)-NH2 in the presence of electron-donor (N,N,N¿N¿-tetramethyl-p-phenylenediamine) or electron-acceptor (methylviologen) probe molecules, which has allowed the visual detection of the corresponding radical ions, in agreement with the occurrence of photoinduced charge separation in MIL-125(Ti)-NH2 | es_ES |
dc.description.sponsorship | Financial support by the Spanish MICINN (CTQ2009-11-583) and the European Community's Seventh Framework Program (FP7/2007-2013) under grant agreement no 228862 (Macademia) is gratefully acknowledged. | en_EN |
dc.format.extent | 4 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Wiley-VCH Verlag | es_ES |
dc.relation.ispartof | ChemPhysChem | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Charge separation | es_ES |
dc.subject | Clusters | es_ES |
dc.subject | Materials science | es_ES |
dc.subject | Metal-organic frameworks | es_ES |
dc.subject | Photochemistry | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Evidence of Photoinduced Charge Separation in the Metal-Organic Framework MIL-125(Ti)-NH2 | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1002/cphc.201200411 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CTQ2009-11583/ES/Ruptura Fotocaliftica del Agua con Luz Solar/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/228862/EU/MOFs as Catalysts and Adsorbents: Discovery and Engineering of Materials for Industrial Applications/ | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | De Miguel De La Torre, M.; Ragon, F.; Devic, T.; Serre, C.; Horcajada Campos, P.; García Gómez, H. (2012). Evidence of Photoinduced Charge Separation in the Metal-Organic Framework MIL-125(Ti)-NH2. ChemPhysChem. 13(16):3651-3654. https://doi.org/10.1002/cphc.201200411 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/cphc.201200411 | es_ES |
dc.description.upvformatpinicio | 3651 | es_ES |
dc.description.upvformatpfin | 3654 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 13 | es_ES |
dc.description.issue | 16 | es_ES |
dc.relation.senia | 240391 | |
dc.identifier.pmid | 22907833 | |
dc.contributor.funder | European Commission | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | |
dc.description.references | Cheetham, A. K., Férey, G., & Loiseau, T. (1999). Anorganische Materialien mit offenen Gerüsten. Angewandte Chemie, 111(22), 3466-3492. doi:10.1002/(sici)1521-3757(19991115)111:22<3466::aid-ange3466>3.0.co;2-m | es_ES |
dc.description.references | Cheetham, A. K., Férey, G., & Loiseau, T. (1999). Open-Framework Inorganic Materials. Angewandte Chemie International Edition, 38(22), 3268-3292. doi:10.1002/(sici)1521-3773(19991115)38:22<3268::aid-anie3268>3.0.co;2-u | es_ES |
dc.description.references | Férey, G. (2008). Hybrid porous solids: past, present, future. Chem. Soc. Rev., 37(1), 191-214. doi:10.1039/b618320b | es_ES |
dc.description.references | Eddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O’Keeffe, M., & Yaghi, O. M. (2001). Modular Chemistry: Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal−Organic Carboxylate Frameworks. Accounts of Chemical Research, 34(4), 319-330. doi:10.1021/ar000034b | es_ES |
dc.description.references | Kitagawa, S., Kitaura, R., & Noro, S. (2004). Funktionale poröse Koordinationspolymere. Angewandte Chemie, 116(18), 2388-2430. doi:10.1002/ange.200300610 | es_ES |
dc.description.references | Kitagawa, S., Kitaura, R., & Noro, S. (2004). Functional Porous Coordination Polymers. Angewandte Chemie International Edition, 43(18), 2334-2375. doi:10.1002/anie.200300610 | es_ES |
dc.description.references | Yaghi, O. M., O’Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M., & Kim, J. (2003). Reticular synthesis and the design of new materials. Nature, 423(6941), 705-714. doi:10.1038/nature01650 | es_ES |
dc.description.references | Stock, N., & Biswas, S. (2011). Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews, 112(2), 933-969. doi:10.1021/cr200304e | es_ES |
dc.description.references | Sumida, K., Rogow, D. L., Mason, J. A., McDonald, T. M., Bloch, E. D., Herm, Z. R., … Long, J. R. (2011). Carbon Dioxide Capture in Metal–Organic Frameworks. Chemical Reviews, 112(2), 724-781. doi:10.1021/cr2003272 | es_ES |
dc.description.references | Férey, G., Serre, C., Devic, T., Maurin, G., Jobic, H., Llewellyn, P. L., … Chang, J.-S. (2011). Why hybrid porous solids capture greenhouse gases? Chem. Soc. Rev., 40(2), 550-562. doi:10.1039/c0cs00040j | es_ES |
dc.description.references | Suh, M. P., Park, H. J., Prasad, T. K., & Lim, D.-W. (2011). Hydrogen Storage in Metal–Organic Frameworks. Chemical Reviews, 112(2), 782-835. doi:10.1021/cr200274s | es_ES |
dc.description.references | Alaerts, L., Maes, M., Giebeler, L., Jacobs, P. A., Martens, J. A., Denayer, J. F. M., … De Vos, D. E. (2008). Selective Adsorption and Separation ofortho-Substituted Alkylaromatics with the Microporous Aluminum Terephthalate MIL-53. Journal of the American Chemical Society, 130(43), 14170-14178. doi:10.1021/ja802761z | es_ES |
dc.description.references | Chen, B., Liang, C., Yang, J., Contreras, D. S., Clancy, Y. L., Lobkovsky, E. B., … Dai, S. (2006). A Microporous Metal–Organic Framework for Gas-Chromatographic Separation of Alkanes. Angewandte Chemie, 118(9), 1418-1421. doi:10.1002/ange.200502844 | es_ES |
dc.description.references | Chen, B., Liang, C., Yang, J., Contreras, D. S., Clancy, Y. L., Lobkovsky, E. B., … Dai, S. (2006). A Microporous Metal–Organic Framework for Gas-Chromatographic Separation of Alkanes. Angewandte Chemie International Edition, 45(9), 1390-1393. doi:10.1002/anie.200502844 | es_ES |
dc.description.references | Yaghi, O. M., Davis, C. E., Li, G., & Li, H. (1997). Selective Guest Binding by Tailored Channels in a 3-D Porous Zinc(II)−Benzenetricarboxylate Network. Journal of the American Chemical Society, 119(12), 2861-2868. doi:10.1021/ja9639473 | es_ES |
dc.description.references | Li, J.-R., Sculley, J., & Zhou, H.-C. (2011). Metal–Organic Frameworks for Separations. Chemical Reviews, 112(2), 869-932. doi:10.1021/cr200190s | es_ES |
dc.description.references | Horcajada, P., Gref, R., Baati, T., Allan, P. K., Maurin, G., Couvreur, P., … Serre, C. (2011). Metal–Organic Frameworks in Biomedicine. Chemical Reviews, 112(2), 1232-1268. doi:10.1021/cr200256v | es_ES |
dc.description.references | Lee, J., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T., & Hupp, J. T. (2009). Metal–organic framework materials as catalysts. Chemical Society Reviews, 38(5), 1450. doi:10.1039/b807080f | es_ES |
dc.description.references | Alaerts, L., Séguin, E., Poelman, H., Thibault-Starzyk, F., Jacobs, P. A., & De Vos, D. E. (2006). Probing the Lewis Acidity and Catalytic Activity of the Metal–Organic Framework [Cu3(btc)2] (BTC=Benzene-1,3,5-tricarboxylate). Chemistry - A European Journal, 12(28), 7353-7363. doi:10.1002/chem.200600220 | es_ES |
dc.description.references | Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924 | es_ES |
dc.description.references | Czaja, A. U., Trukhan, N., & Müller, U. (2009). Industrial applications of metal–organic frameworks. Chemical Society Reviews, 38(5), 1284. doi:10.1039/b804680h | es_ES |
dc.description.references | Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metall-organische Gerüste für die Katalyse. Angewandte Chemie, 121(41), 7638-7649. doi:10.1002/ange.200806063 | es_ES |
dc.description.references | Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metal-Organic Frameworks: Opportunities for Catalysis. Angewandte Chemie International Edition, 48(41), 7502-7513. doi:10.1002/anie.200806063 | es_ES |
dc.description.references | Alvaro, M., Carbonell, E., Ferrer, B., Llabrés i Xamena, F. X., & Garcia, H. (2007). Semiconductor Behavior of a Metal-Organic Framework (MOF). Chemistry - A European Journal, 13(18), 5106-5112. doi:10.1002/chem.200601003 | es_ES |
dc.description.references | Kuc, A., Enyashin, A., & Seifert, G. (2007). Metal−Organic Frameworks: Structural, Energetic, Electronic, and Mechanical Properties. The Journal of Physical Chemistry B, 111(28), 8179-8186. doi:10.1021/jp072085x | es_ES |
dc.description.references | Silva, C. G., Corma, A., & García, H. (2010). Metal–organic frameworks as semiconductors. Journal of Materials Chemistry, 20(16), 3141. doi:10.1039/b924937k | es_ES |
dc.description.references | Tachikawa, T., Choi, J. R., Fujitsuka, M., & Majima, T. (2008). Photoinduced Charge-Transfer Processes on MOF-5 Nanoparticles: Elucidating Differences between Metal-Organic Frameworks and Semiconductor Metal Oxides. The Journal of Physical Chemistry C, 112(36), 14090-14101. doi:10.1021/jp803620v | es_ES |
dc.description.references | Llabrés i Xamena, F. X., Corma, A., & Garcia, H. (2007). Applications for Metal−Organic Frameworks (MOFs) as Quantum Dot Semiconductors. The Journal of Physical Chemistry C, 111(1), 80-85. doi:10.1021/jp063600e | es_ES |
dc.description.references | Gomes Silva, C., Luz, I., Llabrés i Xamena, F. X., Corma, A., & García, H. (2010). Water Stable Zr-Benzenedicarboxylate Metal-Organic Frameworks as Photocatalysts for Hydrogen Generation. Chemistry - A European Journal, 16(36), 11133-11138. doi:10.1002/chem.200903526 | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., Corma, A., & Garcia, H. (2011). Delineating similarities and dissimilarities in the use of metal organic frameworks and zeolites as heterogeneous catalysts for organic reactions. Dalton Transactions, 40(24), 6344. doi:10.1039/c1dt10354g | es_ES |
dc.description.references | FUJISHIMA, A., ZHANG, X., & TRYK, D. (2008). TiO2 photocatalysis and related surface phenomena. Surface Science Reports, 63(12), 515-582. doi:10.1016/j.surfrep.2008.10.001 | es_ES |
dc.description.references | Gaya, U. I., & Abdullah, A. H. (2008). Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9(1), 1-12. doi:10.1016/j.jphotochemrev.2007.12.003 | es_ES |
dc.description.references | Ni, M., Leung, M. K. H., Leung, D. Y. C., & Sumathy, K. (2007). A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable and Sustainable Energy Reviews, 11(3), 401-425. doi:10.1016/j.rser.2005.01.009 | es_ES |
dc.description.references | Alvaro, M., Carbonell, E., Fornés, V., & García, H. (2006). Enhanced Photocatalytic Activity of Zeolite-Encapsulated TiO2 Clusters by Complexation with Organic Additives and N-Doping. ChemPhysChem, 7(1), 200-205. doi:10.1002/cphc.200500264 | es_ES |
dc.description.references | Corma, A., & Garcia, H. (2004). Zeolite-based photocatalysts. Chemical Communications, (13), 1443. doi:10.1039/b400147h | es_ES |
dc.description.references | (s. f.). doi:10.1021/cm990679 | es_ES |
dc.description.references | Serre, C., Groves, J. A., Lightfoot, P., Slawin, A. M. Z., Wright, P. A., Stock, N., … Férey, G. (2006). Synthesis, Structure and Properties of Related MicroporousN,N‘-Piperazinebismethylenephosphonates of Aluminum and Titanium. Chemistry of Materials, 18(6), 1451-1457. doi:10.1021/cm052149l | es_ES |
dc.description.references | Serre, C., & Férey, G. (1999). Hybrid Open Frameworks. 8. Hydrothermal Synthesis, Crystal Structure, and Thermal Behavior of the First Three-Dimensional Titanium(IV) Diphosphonate with an Open Structure: Ti3O2(H2O)2(O3P−(CH2)−PO3)2·(H2O)2, or MIL-22. Inorganic Chemistry, 38(23), 5370-5373. doi:10.1021/ic990345m | es_ES |
dc.description.references | Vaid, T. P., Lobkovsky, E. B., & Wolczanski, P. T. (1997). Covalent 3- and 2-Dimensional Titanium−Quinone Networks. Journal of the American Chemical Society, 119(37), 8742-8743. doi:10.1021/ja971658o | es_ES |
dc.description.references | Burch, R. R. (1990). Oxidation-reduction reactions for preparation of [Ti(OC6H4O)2]n and related metalloquinone polymers: hybrid inorganic-organic metal oxides. Chemistry of Materials, 2(6), 633-635. doi:10.1021/cm00012a005 | es_ES |
dc.description.references | Dan-Hardi, M., Serre, C., Frot, T., Rozes, L., Maurin, G., Sanchez, C., & Férey, G. (2009). A New Photoactive Crystalline Highly Porous Titanium(IV) Dicarboxylate. Journal of the American Chemical Society, 131(31), 10857-10859. doi:10.1021/ja903726m | es_ES |
dc.description.references | Zlotea, C., Phanon, D., Mazaj, M., Heurtaux, D., Guillerm, V., Serre, C., … Latroche, M. (2011). Effect of NH2 and CF3 functionalization on the hydrogen sorption properties of MOFs. Dalton Transactions, 40(18), 4879. doi:10.1039/c1dt10115c | es_ES |
dc.description.references | Fu, Y., Sun, D., Chen, Y., Huang, R., Ding, Z., Fu, X., & Li, Z. (2012). An Amine-Functionalized Titanium Metal-Organic Framework Photocatalyst with Visible-Light-Induced Activity for CO2 Reduction. Angewandte Chemie, 124(14), 3420-3423. doi:10.1002/ange.201108357 | es_ES |
dc.description.references | Fu, Y., Sun, D., Chen, Y., Huang, R., Ding, Z., Fu, X., & Li, Z. (2012). An Amine-Functionalized Titanium Metal-Organic Framework Photocatalyst with Visible-Light-Induced Activity for CO2 Reduction. Angewandte Chemie International Edition, 51(14), 3364-3367. doi:10.1002/anie.201108357 | es_ES |
dc.description.references | Alvaro, M., García, H., García, S., Márquez, F., & Scaiano, J. C. (1997). Intrazeolite Photochemistry. 17. Zeolites as Electron Donors: Photolysis of Methylviologen Incorporated within Zeolites. The Journal of Physical Chemistry B, 101(16), 3043-3051. doi:10.1021/jp9628850 | es_ES |
dc.description.references | García, H., & Roth, H. D. (2002). Generation and Reactions of Organic Radical Cations in Zeolites. Chemical Reviews, 102(11), 3947-4008. doi:10.1021/cr980026x | es_ES |