Mostrar el registro sencillo del ítem
dc.contributor.author | Romero Alcalde, Eloy | es_ES |
dc.contributor.author | Román Moltó, José Enrique | es_ES |
dc.date.accessioned | 2013-12-04T08:57:49Z | |
dc.date.issued | 2011-12-10 | |
dc.identifier.issn | 1532-0626 | |
dc.identifier.uri | http://hdl.handle.net/10251/34280 | |
dc.description.abstract | In the numerical solution of large-scale eigenvalue problems, Davidson-type methods are an increasingly popular alternative to Krylov eigensolvers. The main motivation is to avoid the expensive factorizations that are often needed by Krylov solvers when the problem is generalized or interior eigenvalues are desired. In Davidson-type methods, the factorization is replaced by iterative linear solvers that can be accelerated by a smart preconditioner. Jacobi-Davidson is one of the most effective variants. However, parallel implementations of this method are not widely available, particularly for non-symmetric problems. We present a parallel implementation that has been included in SLEPc, the Scalable Library for Eigenvalue Problem Computations, and test it in the context of a highly scalable plasma turbulence simulation code. We analyze its parallel efficiency and compare it with a Krylov-Schur eigensolver. © 2011 John Wiley and Sons, Ltd.. | es_ES |
dc.description.sponsorship | The authors are indebted to Florian Merz for providing us with the test cases and for his useful suggestions. The authors acknowledge the computer resources provided by the Barcelona Supercomputing Center (BSC). This work was supported by the Spanish Ministerio de Ciencia e Innovacion under project TIN2009-07519. | en_EN |
dc.format.extent | 13 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Wiley-Blackwell | es_ES |
dc.relation.ispartof | Concurrency and Computation: Practice and Experience | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Eigenvalue computations | es_ES |
dc.subject | Jacobi-Davidson | es_ES |
dc.subject | Message-passing parallelization | es_ES |
dc.subject | Plasma physics simulation | es_ES |
dc.subject.classification | CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL | es_ES |
dc.title | Computing subdominant unstable modes of turbulent plasma with a parallel Jacobi-Davidson eigensolver | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1002/cpe.1740 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TIN2009-07519/ES/Metodos Avanzados Y Tecnicas Computacionales Novedosas Para La Resolucion Numerica De Problemas De Valores Propios De Gran Dimension/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Romero Alcalde, E.; Román Moltó, JE. (2011). Computing subdominant unstable modes of turbulent plasma with a parallel Jacobi-Davidson eigensolver. Concurrency and Computation: Practice and Experience. 23:2179-2191. https://doi.org/10.1002/cpe.1740 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/cpe.1740 | es_ES |
dc.description.upvformatpinicio | 2179 | es_ES |
dc.description.upvformatpfin | 2191 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 23 | es_ES |
dc.relation.senia | 205550 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Hochstenbach, M. E., & Notay, Y. (2009). Controlling Inner Iterations in the Jacobi–Davidson Method. SIAM Journal on Matrix Analysis and Applications, 31(2), 460-477. doi:10.1137/080732110 | es_ES |
dc.description.references | Heuveline, V., Philippe, B., & Sadkane, M. (1997). Numerical Algorithms, 16(1), 55-75. doi:10.1023/a:1019126827697 | es_ES |
dc.description.references | Arbenz, P., Bečka, M., Geus, R., Hetmaniuk, U., & Mengotti, T. (2006). On a parallel multilevel preconditioned Maxwell eigensolver. Parallel Computing, 32(2), 157-165. doi:10.1016/j.parco.2005.06.005 | es_ES |
dc.description.references | Genseberger, M. (2010). Improving the parallel performance of a domain decomposition preconditioning technique in the Jacobi–Davidson method for large scale eigenvalue problems. Applied Numerical Mathematics, 60(11), 1083-1099. doi:10.1016/j.apnum.2009.07.004 | es_ES |
dc.description.references | Stathopoulos, A., & McCombs, J. R. (2010). PRIMME. ACM Transactions on Mathematical Software, 37(2), 1-30. doi:10.1145/1731022.1731031 | es_ES |
dc.description.references | Baker, C. G., Hetmaniuk, U. L., Lehoucq, R. B., & Thornquist, H. K. (2009). Anasazi software for the numerical solution of large-scale eigenvalue problems. ACM Transactions on Mathematical Software, 36(3), 1-23. doi:10.1145/1527286.1527287 | es_ES |
dc.description.references | Hernandez, V., Roman, J. E., & Vidal, V. (2005). SLEPc. ACM Transactions on Mathematical Software, 31(3), 351-362. doi:10.1145/1089014.1089019 | es_ES |
dc.description.references | Romero, E., Cruz, M. B., Roman, J. E., & Vasconcelos, P. B. (2011). A Parallel Implementation of the Jacobi-Davidson Eigensolver for Unsymmetric Matrices. High Performance Computing for Computational Science – VECPAR 2010, 380-393. doi:10.1007/978-3-642-19328-6_35 | es_ES |
dc.description.references | Romero, E., & Roman, J. E. (2010). A Parallel Implementation of the Jacobi-Davidson Eigensolver and Its Application in a Plasma Turbulence Code. Lecture Notes in Computer Science, 101-112. doi:10.1007/978-3-642-15291-7_11 | es_ES |
dc.description.references | Über ein leichtes Verfahren die in der Theorie der Säcularstörungen vorkommenden Gleichungen numerisch aufzulösen*). (1846). Journal für die reine und angewandte Mathematik (Crelles Journal), 1846(30), 51-94. doi:10.1515/crll.1846.30.51 | es_ES |
dc.description.references | G. Sleijpen, G. L., & Van der Vorst, H. A. (1996). A Jacobi–Davidson Iteration Method for Linear Eigenvalue Problems. SIAM Journal on Matrix Analysis and Applications, 17(2), 401-425. doi:10.1137/s0895479894270427 | es_ES |
dc.description.references | Fokkema, D. R., Sleijpen, G. L. G., & Van der Vorst, H. A. (1998). Jacobi--Davidson Style QR and QZ Algorithms for the Reduction of Matrix Pencils. SIAM Journal on Scientific Computing, 20(1), 94-125. doi:10.1137/s1064827596300073 | es_ES |
dc.description.references | Morgan, R. B. (1991). Computing interior eigenvalues of large matrices. Linear Algebra and its Applications, 154-156, 289-309. doi:10.1016/0024-3795(91)90381-6 | es_ES |
dc.description.references | Paige, C. C., Parlett, B. N., & van der Vorst, H. A. (1995). Approximate solutions and eigenvalue bounds from Krylov subspaces. Numerical Linear Algebra with Applications, 2(2), 115-133. doi:10.1002/nla.1680020205 | es_ES |
dc.description.references | Stathopoulos, A., Saad, Y., & Wu, K. (1998). Dynamic Thick Restarting of the Davidson, and the Implicitly Restarted Arnoldi Methods. SIAM Journal on Scientific Computing, 19(1), 227-245. doi:10.1137/s1064827596304162 | es_ES |
dc.description.references | Sleijpen, G. L. G., Booten, A. G. L., Fokkema, D. R., & van der Vorst, H. A. (1996). Jacobi-davidson type methods for generalized eigenproblems and polynomial eigenproblems. BIT Numerical Mathematics, 36(3), 595-633. doi:10.1007/bf01731936 | es_ES |
dc.description.references | Balay S Buschelman K Eijkhout V Gropp W Kaushik D Knepley M McInnes LC Smith B Zhang H PETSc users manual 2010 | es_ES |
dc.description.references | Hernandez, V., Roman, J. E., & Tomas, A. (2007). Parallel Arnoldi eigensolvers with enhanced scalability via global communications rearrangement. Parallel Computing, 33(7-8), 521-540. doi:10.1016/j.parco.2007.04.004 | es_ES |
dc.description.references | Dannert, T., & Jenko, F. (2005). Gyrokinetic simulation of collisionless trapped-electron mode turbulence. Physics of Plasmas, 12(7), 072309. doi:10.1063/1.1947447 | es_ES |
dc.description.references | Roman, J. E., Kammerer, M., Merz, F., & Jenko, F. (2010). Fast eigenvalue calculations in a massively parallel plasma turbulence code. Parallel Computing, 36(5-6), 339-358. doi:10.1016/j.parco.2009.12.001 | es_ES |
dc.description.references | Merz, F., & Jenko, F. (2010). Nonlinear interplay of TEM and ITG turbulence and its effect on transport. Nuclear Fusion, 50(5), 054005. doi:10.1088/0029-5515/50/5/054005 | es_ES |
dc.description.references | Simoncini, V., & Szyld, D. B. (2002). Flexible Inner-Outer Krylov Subspace Methods. SIAM Journal on Numerical Analysis, 40(6), 2219-2239. doi:10.1137/s0036142902401074 | es_ES |
dc.description.references | Morgan, R. B. (2002). GMRES with Deflated Restarting. SIAM Journal on Scientific Computing, 24(1), 20-37. doi:10.1137/s1064827599364659 | es_ES |