Mostrar el registro sencillo del ítem
dc.contributor.author | Estornell Cremades, Javier | es_ES |
dc.contributor.author | Ruiz Fernández, Luis Ángel | es_ES |
dc.contributor.author | Velázquez Martí, Borja | es_ES |
dc.contributor.author | Hermosilla Gómez, Txomin | es_ES |
dc.date.accessioned | 2013-12-11T07:57:00Z | |
dc.date.available | 2013-12-11T07:57:00Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 1931-3195 | |
dc.identifier.uri | http://hdl.handle.net/10251/34428 | |
dc.description.abstract | Shrub vegetation is a key element of Mediterranean forest areas and it is necessary to develop tools that allow a precise knowledge of this vegetation. This study aims to predict shrub volume and analyze the factors affecting the accuracy of these estimations in small stands using airborne discrete-return LiDAR data. The study was performed over 83 circular stands with 0.5 m radius located in Chiva (Spain) mainly occupied by Quercus coccifera. The vegetation inside each area was clear cut, and the height and the diameter of each plant was measured to compute the volume of shrub vegetation per stand. Volume values were related with maximum height values derived from LiDAR data reaching a coefficient of determination value R2=0.26. Afterwards, factors affecting the quality of volume estimations were analyzed, i.e., vegetation type, LiDAR density, and accuracy of the digital terrain model (DTM). Significant accuracy improvements (R2=0.71) were detected for stands with 0.5 m, LiDAR data density greater than 8 points/m2, vegetation Q. coccifera, and error associated to the DTM less than 0.20 m. These results show the feasibility of using LiDAR data to predict shrub volume under certain conditions, which can contribute to improved forest management and characterization. | es_ES |
dc.description.sponsorship | The authors appreciate the financial support provided by the Spanish Ministerio de Ciencia e Innovacion in the framework of the project CGL2010-19591. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Society of Photo-optical Instrumentation Engineers (SPIE) | es_ES |
dc.relation.ispartof | Journal of Applied Remote Sensing | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Shrub | es_ES |
dc.subject | Volume | es_ES |
dc.subject | LiDAR data | es_ES |
dc.subject | Digital Terrain Model (DTM) | es_ES |
dc.subject.classification | INGENIERIA AGROFORESTAL | es_ES |
dc.subject.classification | INGENIERIA CARTOGRAFICA, GEODESIA Y FOTOGRAMETRIA | es_ES |
dc.title | Assessment of factors affecting shrub volume estimations using airborne discrete-return LiDAR data in Mediterranean areas | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1117/1.JRS.6.063544 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CGL2010-19591/ES/DESARROLLO DE METODOLOGIAS INTEGRADAS PARA LA ACTUALIZACION DE BASES DE DATOS DE OCUPACION DEL SUELO/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Rural y Agroalimentaria - Departament d'Enginyeria Rural i Agroalimentària | es_ES |
dc.description.bibliographicCitation | Estornell Cremades, J.; Ruiz Fernández, LÁ.; Velázquez Martí, B.; Hermosilla Gómez, T. (2012). Assessment of factors affecting shrub volume estimations using airborne discrete-return LiDAR data in Mediterranean areas. Journal of Applied Remote Sensing. 6:1-10. https://doi.org/10.1117/1.JRS.6.063544 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1117/1.JRS.6.063544 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 10 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 6 | es_ES |
dc.relation.senia | 222973 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Velázquez-Martí, B., Fernández-González, E., Estornell, J., & Ruiz, L. A. (2010). Dendrometric and dasometric analysis of the bushy biomass in Mediterranean forests. Forest Ecology and Management, 259(5), 875-882. doi:10.1016/j.foreco.2009.11.027 | es_ES |
dc.description.references | Mundt, J. T., Streutker, D. R., & Glenn, N. F. (2006). Mapping Sagebrush Distribution Using Fusion of Hyperspectral and Lidar Classifications. Photogrammetric Engineering & Remote Sensing, 72(1), 47-54. doi:10.14358/pers.72.1.47 | es_ES |
dc.description.references | Riaño, D., Chuvieco, E., Ustin, S. L., Salas, J., Rodríguez-Pérez, J. R., Ribeiro, L. M., … Fernández, H. (2007). Estimation of shrub height for fuel-type mapping combining airborne LiDAR and simultaneous color infrared ortho imaging. International Journal of Wildland Fire, 16(3), 341. doi:10.1071/wf06003 | es_ES |
dc.description.references | Riaño, D., Chuvieco, E., Condés, S., González-Matesanz, J., & Ustin, S. L. (2004). Generation of crown bulk density for Pinus sylvestris L. from lidar. Remote Sensing of Environment, 92(3), 345-352. doi:10.1016/j.rse.2003.12.014 | es_ES |
dc.description.references | Andersen, H.-E., McGaughey, R. J., & Reutebuch, S. E. (2005). Estimating forest canopy fuel parameters using LIDAR data. Remote Sensing of Environment, 94(4), 441-449. doi:10.1016/j.rse.2004.10.013 | es_ES |
dc.description.references | Erdody, T. L., & Moskal, L. M. (2010). Fusion of LiDAR and imagery for estimating forest canopy fuels. Remote Sensing of Environment, 114(4), 725-737. doi:10.1016/j.rse.2009.11.002 | es_ES |
dc.description.references | Næsset, E. (2004). Accuracy of forest inventory using airborne laser scanning: evaluating the first nordic full-scale operational project. Scandinavian Journal of Forest Research, 19(6), 554-557. doi:10.1080/02827580410019544 | es_ES |
dc.description.references | Breidenbach, J., Nothdurft, A., & Kändler, G. (2010). Comparison of nearest neighbour approaches for small area estimation of tree species-specific forest inventory attributes in central Europe using airborne laser scanner data. European Journal of Forest Research, 129(5), 833-846. doi:10.1007/s10342-010-0384-1 | es_ES |
dc.description.references | Gonzalez, P., Asner, G. P., Battles, J. J., Lefsky, M. A., Waring, K. M., & Palace, M. (2010). Forest carbon densities and uncertainties from Lidar, QuickBird, and field measurements in California. Remote Sensing of Environment, 114(7), 1561-1575. doi:10.1016/j.rse.2010.02.011 | es_ES |
dc.description.references | Wulder, M. A., White, J. C., Stinson, G., Hilker, T., Kurz, W. A., Coops, N. C., … Trofymow, J. A. (Tony). (2009). Implications of differing input data sources and approaches upon forest carbon stock estimation. Environmental Monitoring and Assessment, 166(1-4), 543-561. doi:10.1007/s10661-009-1022-6 | es_ES |
dc.description.references | Dubayah, R. O., Sheldon, S. L., Clark, D. B., Hofton, M. A., Blair, J. B., Hurtt, G. C., & Chazdon, R. L. (2010). Estimation of tropical forest height and biomass dynamics using lidar remote sensing at La Selva, Costa Rica. Journal of Geophysical Research: Biogeosciences, 115(G2), n/a-n/a. doi:10.1029/2009jg000933 | es_ES |
dc.description.references | (2010). Journal of Ecology, 98(3). doi:10.1111/jec.2010.98.issue-3 | es_ES |
dc.description.references | Bater, C. W., Wulder, M. A., Coops, N. C., Nelson, R. F., Hilker, T., & Nasset, E. (2011). Stability of Sample-Based Scanning-LiDAR-Derived Vegetation Metrics for Forest Monitoring. IEEE Transactions on Geoscience and Remote Sensing, 49(6), 2385-2392. doi:10.1109/tgrs.2010.2099232 | es_ES |
dc.description.references | Hyyppä, J., Hyyppä, H., Leckie, D., Gougeon, F., Yu, X., & Maltamo, M. (2008). Review of methods of small‐footprint airborne laser scanning for extracting forest inventory data in boreal forests. International Journal of Remote Sensing, 29(5), 1339-1366. doi:10.1080/01431160701736489 | es_ES |
dc.description.references | Popescu, S. C. (2007). Estimating biomass of individual pine trees using airborne lidar. Biomass and Bioenergy, 31(9), 646-655. doi:10.1016/j.biombioe.2007.06.022 | es_ES |
dc.description.references | Holopainen, M., Mäkinen, A., Rasinmäki, J., Hyyppä, J., Hyyppä, H., Kaartinen, H., … Kangas, A. (2009). Effect of tree-level airborne laser-scanning measurement accuracy on the timing and expected value of harvest decisions. European Journal of Forest Research, 129(5), 899-907. doi:10.1007/s10342-009-0282-6 | es_ES |
dc.description.references | Dalponte, M., Bruzzone, L., & Gianelle, D. (2011). A System for the Estimation of Single-Tree Stem Diameter and Volume Using Multireturn LIDAR Data. IEEE Transactions on Geoscience and Remote Sensing, 49(7), 2479-2490. doi:10.1109/tgrs.2011.2107744 | es_ES |
dc.description.references | Hill, R. A., & Thomson, A. G. (2005). Mapping woodland species composition and structure using airborne spectral and LiDAR data. International Journal of Remote Sensing, 26(17), 3763-3779. doi:10.1080/01431160500114706 | es_ES |
dc.description.references | Mutlu, M., Popescu, S. C., & Zhao, K. (2008). Sensitivity analysis of fire behavior modeling with LIDAR-derived surface fuel maps. Forest Ecology and Management, 256(3), 289-294. doi:10.1016/j.foreco.2008.04.014 | es_ES |
dc.description.references | Su, J. G., & Bork, E. W. (2007). Characterization of diverse plant communities in Aspen Parkland rangeland using LiDAR data. Applied Vegetation Science, 10(3), 407-416. doi:10.1111/j.1654-109x.2007.tb00440.x | es_ES |
dc.description.references | Estornell, J., Ruiz, L. A., Velázquez-Martí, B., & Fernández-Sarría, A. (2011). Estimation of shrub biomass by airborne LiDAR data in small forest stands. Forest Ecology and Management, 262(9), 1697-1703. doi:10.1016/j.foreco.2011.07.026 | es_ES |
dc.description.references | Takhtajan, A. ,Floristic regions of the world, University of California Press, Los Angeles (1986). | es_ES |
dc.description.references | Gómez, F. ,Los bosques ibéricos, Editorial Planeta, Barcelona (1998). | es_ES |
dc.description.references | Estornell, J., Ruiz, L. A., Velázquez-Martí, B., & Hermosilla, T. (2011). Analysis of the factors affecting LiDAR DTM accuracy in a steep shrub area. International Journal of Digital Earth, 4(6), 521-538. doi:10.1080/17538947.2010.533201 | es_ES |
dc.description.references | Reitberger, J., Schnörr, C., Krzystek, P., & Stilla, U. (2009). 3D segmentation of single trees exploiting full waveform LIDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 64(6), 561-574. doi:10.1016/j.isprsjprs.2009.04.002 | es_ES |
dc.description.references | Yu, Q., Gong, P., Clinton, N., Biging, G., Kelly, M., & Schirokauer, D. (2006). Object-based Detailed Vegetation Classification with Airborne High Spatial Resolution Remote Sensing Imagery. Photogrammetric Engineering & Remote Sensing, 72(7), 799-811. doi:10.14358/pers.72.7.799 | es_ES |