- -

Artificial neural networks for predicting dorsal pressures on the foot surface while walking

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Artificial neural networks for predicting dorsal pressures on the foot surface while walking

Show full item record

Rupérez Moreno, MJ.; Martín-Guerrero, J.; Monserrat Aranda, C.; Alcañiz Raya, ML. (2012). Artificial neural networks for predicting dorsal pressures on the foot surface while walking. Expert Systems with Applications. 39(5):5349-5357. doi:10.1016/j.eswa.2011.11.050

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/34823

Files in this item

Item Metadata

Title: Artificial neural networks for predicting dorsal pressures on the foot surface while walking
Author: Rupérez Moreno, María José Martín-Guerrero, J.D. Monserrat Aranda, Carlos Alcañiz Raya, Mariano Luis
UPV Unit: Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà
Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica
Issued date:
Abstract:
In this work, artificial neural networks (ANNs) are proposed to predict the dorsal pressure over the foot surface exerted by the shoe upper while walking. A model that is based on the multilayer perceptron (MLP) is used ...[+]
Subjects: Artificial neural networks , Dorsal pressures , Multilayer perceptron , Shoe upper
Copyrigths: Cerrado
Source:
Expert Systems with Applications. (issn: 0957-4174 )
DOI: 10.1016/j.eswa.2011.11.050
Publisher:
Elsevier
Publisher version: http://dx.doi.org/10.1016/j.eswa.2011.11.050
Thanks:
This work has been partially funded by the Spanish Ministry of Education and Science (reference CSD2007-00018).
Type: Artículo

This item appears in the following Collection(s)

Show full item record