- -

Comparative Study of the Rheological Behavior of Multiwalled Carbon Nanotubes and Nanofiber Composites Prepared by the Dilution of a Masterbatch of Polypropylene

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Comparative Study of the Rheological Behavior of Multiwalled Carbon Nanotubes and Nanofiber Composites Prepared by the Dilution of a Masterbatch of Polypropylene

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Boronat Vitoria, Teodomiro es_ES
dc.contributor.author García Sanoguera, David es_ES
dc.contributor.author Pascual, J. es_ES
dc.contributor.author Peris, F. es_ES
dc.contributor.author Sánchez Nacher, Lourdes es_ES
dc.date.accessioned 2014-01-21T11:30:04Z
dc.date.issued 2012-11-05
dc.identifier.issn 0021-8995
dc.identifier.uri http://hdl.handle.net/10251/34989
dc.description.abstract In this investigation, the characteristics and the rheological properties of two different nanocomposite systems were investigated. These systems consisted of a dispersion of carbon nanotubes (CNTs) and carbon nanofibers (CNFs) in a polypropylene (PP) matrix. The mixing process was carried out by melt compounding with a twin-screw corotating extruder with different reinforcement amounts (0.2-20 wt %) from concentrated masterbatches (20 wt %) of PP/CNT and PP/CNF. The results show a remarkable increase in the viscosity for both blends as the reinforcement amount was increased. It was important to evaluate the rheological behavior to understand the effect of the nanocarbon particles on the internal structures and their processing properties of the obtained composites. CNFs were a more viable reinforcement from a processability point of view because the obtained viscosities of the PP/CNF blends were more manageable. © 2012 Wiley Periodicals, Inc. es_ES
dc.description.sponsorship Contract grant sponsor: Universitat Politecnica de Valencia; contract grant number: PAID-06-10-003-300. en_EN
dc.language Inglés es_ES
dc.publisher Wiley-Blackwell es_ES
dc.relation.ispartof Journal of Applied Polymer Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Carbon nanotube es_ES
dc.subject Nanocomposites es_ES
dc.subject Poly(propylene) (PP) es_ES
dc.subject Rheology es_ES
dc.subject Comparative studies es_ES
dc.subject Internal structure es_ES
dc.subject Masterbatch es_ES
dc.subject Melt-compounding es_ES
dc.subject Mixing process es_ES
dc.subject Nano-carbon particles es_ES
dc.subject Nanocomposite systems es_ES
dc.subject Nanofiber composites es_ES
dc.subject Processability es_ES
dc.subject Processing properties es_ES
dc.subject Rheological behaviors es_ES
dc.subject Rheological property es_ES
dc.subject Carbon nanotubes es_ES
dc.subject Multiwalled carbon nanotubes (MWCN) es_ES
dc.subject Reinforcement es_ES
dc.subject Thermoplastics es_ES
dc.subject Polypropylenes es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.subject.classification INGENIERIA DE LOS PROCESOS DE FABRICACION es_ES
dc.title Comparative Study of the Rheological Behavior of Multiwalled Carbon Nanotubes and Nanofiber Composites Prepared by the Dilution of a Masterbatch of Polypropylene es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/app.36623
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-10-003-300/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.description.bibliographicCitation Boronat Vitoria, T.; García Sanoguera, D.; Pascual, J.; Peris, F.; Sánchez Nacher, L. (2012). Comparative Study of the Rheological Behavior of Multiwalled Carbon Nanotubes and Nanofiber Composites Prepared by the Dilution of a Masterbatch of Polypropylene. Journal of Applied Polymer Science. 126(3):1044-1052. https://doi.org/10.1002/app.36623 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://onlinelibrary.wiley.com/doi/10.1002/app.36623/pdf es_ES
dc.description.upvformatpinicio 1044 es_ES
dc.description.upvformatpfin 1052 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 126 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 231201
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references LeBaron, P. (1999). Polymer-layered silicate nanocomposites: an overview. Applied Clay Science, 15(1-2), 11-29. doi:10.1016/s0169-1317(99)00017-4 es_ES
dc.description.references DAVIS, W. R., SLAWSON, R. J., & RIGBY, G. R. (1953). An Unusual Form of Carbon. Nature, 171(4356), 756-756. doi:10.1038/171756a0 es_ES
dc.description.references Manchado, M. A. L., Valentini, L., Biagiotti, J., & Kenny, J. M. (2005). Thermal and mechanical properties of single-walled carbon nanotubes–polypropylene composites prepared by melt processing. Carbon, 43(7), 1499-1505. doi:10.1016/j.carbon.2005.01.031 es_ES
dc.description.references Zhou, Y., Pervin, F., Jeelani, S., & Mallick, P. K. (2008). Improvement in mechanical properties of carbon fabric–epoxy composite using carbon nanofibers. Journal of Materials Processing Technology, 198(1-3), 445-453. doi:10.1016/j.jmatprotec.2007.07.028 es_ES
dc.description.references Allaoui, A. (2002). Mechanical and electrical properties of a MWNT/epoxy composite. Composites Science and Technology, 62(15), 1993-1998. doi:10.1016/s0266-3538(02)00129-x es_ES
dc.description.references Allaoui, A., Hoa, S. V., & Pugh, M. D. (2008). The electronic transport properties and microstructure of carbon nanofiber/epoxy composites. Composites Science and Technology, 68(2), 410-416. doi:10.1016/j.compscitech.2007.06.028 es_ES
dc.description.references Bauhofer, W., & Kovacs, J. Z. (2009). A review and analysis of electrical percolation in carbon nanotube polymer composites. Composites Science and Technology, 69(10), 1486-1498. doi:10.1016/j.compscitech.2008.06.018 es_ES
dc.description.references Byrne, M. T., & Gun’ko, Y. K. (2010). Recent Advances in Research on Carbon Nanotube-Polymer Composites. Advanced Materials, 22(15), 1672-1688. doi:10.1002/adma.200901545 es_ES
dc.description.references Li, C., Deng, H., Wang, K., Zhang, Q., Chen, F., & Fu, Q. (2011). Strengthening and toughening of thermoplastic polyolefin elastomer using polypropylene-grafted multiwalled carbon nanotubes. Journal of Applied Polymer Science, 121(4), 2104-2112. doi:10.1002/app.33892 es_ES
dc.description.references Logakis, E., Pollatos, E., Pandis, C., Peoglos, V., Zuburtikudis, I., Delides, C. G., … Pissis, P. (2010). Structure–property relationships in isotactic polypropylene/multi-walled carbon nanotubes nanocomposites. Composites Science and Technology, 70(2), 328-335. doi:10.1016/j.compscitech.2009.10.023 es_ES
dc.description.references Lozano, K., & Barrera, E. V. (2000). Nanofiber-reinforced thermoplastic composites. I. Thermoanalytical and mechanical analyses. Journal of Applied Polymer Science, 79(1), 125-133. doi:10.1002/1097-4628(20010103)79:1<125::aid-app150>3.0.co;2-d es_ES
dc.description.references Zhang, Y., Broekhuis, A. A., Stuart, M. C. A., Fernandez Landaluce, T., Fausti, D., Rudolf, P., & Picchioni, F. (2008). Cross-Linking of Multiwalled Carbon Nanotubes with Polymeric Amines. Macromolecules, 41(16), 6141-6146. doi:10.1021/ma800869w es_ES
dc.description.references O’Bryan, G., Yang, E. L., Zifer, T., Wally, K., Skinner, J. L., & Vance, A. L. (2010). Nanotube surface functionalization effects in blended multiwalled carbon nanotube/PVDF composites. Journal of Applied Polymer Science, 120(3), 1379-1384. doi:10.1002/app.33264 es_ES
dc.description.references Bose, S., Khare, R. A., & Moldenaers, P. (2010). Assessing the strengths and weaknesses of various types of pre-treatments of carbon nanotubes on the properties of polymer/carbon nanotubes composites: A critical review. Polymer, 51(5), 975-993. doi:10.1016/j.polymer.2010.01.044 es_ES
dc.description.references Cross, M. M. (1965). Rheology of non-Newtonian fluids: A new flow equation for pseudoplastic systems. Journal of Colloid Science, 20(5), 417-437. doi:10.1016/0095-8522(65)90022-x es_ES
dc.description.references Williams, M. L., Landel, R. F., & Ferry, J. D. (1955). The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids. Journal of the American Chemical Society, 77(14), 3701-3707. doi:10.1021/ja01619a008 es_ES
dc.description.references Reig, M. J., Segui, V. J., & Zamanillo, J. D. (2005). Rheological Behavior Modeling of Recycled ABS/PC Blends Applied to Injection Molding Process. Journal of Polymer Engineering, 25(5). doi:10.1515/polyeng.2005.25.5.435 es_ES
dc.description.references Lee, S. H., Kim, M. W., Kim, S. H., & Youn, J. R. (2008). Rheological and electrical properties of polypropylene/MWCNT composites prepared with MWCNT masterbatch chips. European Polymer Journal, 44(6), 1620-1630. doi:10.1016/j.eurpolymj.2008.03.017 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem