Mostrar el registro sencillo del ítem
dc.contributor.author | Boronat Vitoria, Teodomiro | es_ES |
dc.contributor.author | García Sanoguera, David | es_ES |
dc.contributor.author | Pascual, J. | es_ES |
dc.contributor.author | Peris, F. | es_ES |
dc.contributor.author | Sánchez Nacher, Lourdes | es_ES |
dc.date.accessioned | 2014-01-21T11:30:04Z | |
dc.date.issued | 2012-11-05 | |
dc.identifier.issn | 0021-8995 | |
dc.identifier.uri | http://hdl.handle.net/10251/34989 | |
dc.description.abstract | In this investigation, the characteristics and the rheological properties of two different nanocomposite systems were investigated. These systems consisted of a dispersion of carbon nanotubes (CNTs) and carbon nanofibers (CNFs) in a polypropylene (PP) matrix. The mixing process was carried out by melt compounding with a twin-screw corotating extruder with different reinforcement amounts (0.2-20 wt %) from concentrated masterbatches (20 wt %) of PP/CNT and PP/CNF. The results show a remarkable increase in the viscosity for both blends as the reinforcement amount was increased. It was important to evaluate the rheological behavior to understand the effect of the nanocarbon particles on the internal structures and their processing properties of the obtained composites. CNFs were a more viable reinforcement from a processability point of view because the obtained viscosities of the PP/CNF blends were more manageable. © 2012 Wiley Periodicals, Inc. | es_ES |
dc.description.sponsorship | Contract grant sponsor: Universitat Politecnica de Valencia; contract grant number: PAID-06-10-003-300. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley-Blackwell | es_ES |
dc.relation.ispartof | Journal of Applied Polymer Science | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Carbon nanotube | es_ES |
dc.subject | Nanocomposites | es_ES |
dc.subject | Poly(propylene) (PP) | es_ES |
dc.subject | Rheology | es_ES |
dc.subject | Comparative studies | es_ES |
dc.subject | Internal structure | es_ES |
dc.subject | Masterbatch | es_ES |
dc.subject | Melt-compounding | es_ES |
dc.subject | Mixing process | es_ES |
dc.subject | Nano-carbon particles | es_ES |
dc.subject | Nanocomposite systems | es_ES |
dc.subject | Nanofiber composites | es_ES |
dc.subject | Processability | es_ES |
dc.subject | Processing properties | es_ES |
dc.subject | Rheological behaviors | es_ES |
dc.subject | Rheological property | es_ES |
dc.subject | Carbon nanotubes | es_ES |
dc.subject | Multiwalled carbon nanotubes (MWCN) | es_ES |
dc.subject | Reinforcement | es_ES |
dc.subject | Thermoplastics | es_ES |
dc.subject | Polypropylenes | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.subject.classification | INGENIERIA DE LOS PROCESOS DE FABRICACION | es_ES |
dc.title | Comparative Study of the Rheological Behavior of Multiwalled Carbon Nanotubes and Nanofiber Composites Prepared by the Dilution of a Masterbatch of Polypropylene | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1002/app.36623 | |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-06-10-003-300/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials | es_ES |
dc.description.bibliographicCitation | Boronat Vitoria, T.; García Sanoguera, D.; Pascual, J.; Peris, F.; Sánchez Nacher, L. (2012). Comparative Study of the Rheological Behavior of Multiwalled Carbon Nanotubes and Nanofiber Composites Prepared by the Dilution of a Masterbatch of Polypropylene. Journal of Applied Polymer Science. 126(3):1044-1052. https://doi.org/10.1002/app.36623 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://onlinelibrary.wiley.com/doi/10.1002/app.36623/pdf | es_ES |
dc.description.upvformatpinicio | 1044 | es_ES |
dc.description.upvformatpfin | 1052 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 126 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.senia | 231201 | |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | LeBaron, P. (1999). Polymer-layered silicate nanocomposites: an overview. Applied Clay Science, 15(1-2), 11-29. doi:10.1016/s0169-1317(99)00017-4 | es_ES |
dc.description.references | DAVIS, W. R., SLAWSON, R. J., & RIGBY, G. R. (1953). An Unusual Form of Carbon. Nature, 171(4356), 756-756. doi:10.1038/171756a0 | es_ES |
dc.description.references | Manchado, M. A. L., Valentini, L., Biagiotti, J., & Kenny, J. M. (2005). Thermal and mechanical properties of single-walled carbon nanotubes–polypropylene composites prepared by melt processing. Carbon, 43(7), 1499-1505. doi:10.1016/j.carbon.2005.01.031 | es_ES |
dc.description.references | Zhou, Y., Pervin, F., Jeelani, S., & Mallick, P. K. (2008). Improvement in mechanical properties of carbon fabric–epoxy composite using carbon nanofibers. Journal of Materials Processing Technology, 198(1-3), 445-453. doi:10.1016/j.jmatprotec.2007.07.028 | es_ES |
dc.description.references | Allaoui, A. (2002). Mechanical and electrical properties of a MWNT/epoxy composite. Composites Science and Technology, 62(15), 1993-1998. doi:10.1016/s0266-3538(02)00129-x | es_ES |
dc.description.references | Allaoui, A., Hoa, S. V., & Pugh, M. D. (2008). The electronic transport properties and microstructure of carbon nanofiber/epoxy composites. Composites Science and Technology, 68(2), 410-416. doi:10.1016/j.compscitech.2007.06.028 | es_ES |
dc.description.references | Bauhofer, W., & Kovacs, J. Z. (2009). A review and analysis of electrical percolation in carbon nanotube polymer composites. Composites Science and Technology, 69(10), 1486-1498. doi:10.1016/j.compscitech.2008.06.018 | es_ES |
dc.description.references | Byrne, M. T., & Gun’ko, Y. K. (2010). Recent Advances in Research on Carbon Nanotube-Polymer Composites. Advanced Materials, 22(15), 1672-1688. doi:10.1002/adma.200901545 | es_ES |
dc.description.references | Li, C., Deng, H., Wang, K., Zhang, Q., Chen, F., & Fu, Q. (2011). Strengthening and toughening of thermoplastic polyolefin elastomer using polypropylene-grafted multiwalled carbon nanotubes. Journal of Applied Polymer Science, 121(4), 2104-2112. doi:10.1002/app.33892 | es_ES |
dc.description.references | Logakis, E., Pollatos, E., Pandis, C., Peoglos, V., Zuburtikudis, I., Delides, C. G., … Pissis, P. (2010). Structure–property relationships in isotactic polypropylene/multi-walled carbon nanotubes nanocomposites. Composites Science and Technology, 70(2), 328-335. doi:10.1016/j.compscitech.2009.10.023 | es_ES |
dc.description.references | Lozano, K., & Barrera, E. V. (2000). Nanofiber-reinforced thermoplastic composites. I. Thermoanalytical and mechanical analyses. Journal of Applied Polymer Science, 79(1), 125-133. doi:10.1002/1097-4628(20010103)79:1<125::aid-app150>3.0.co;2-d | es_ES |
dc.description.references | Zhang, Y., Broekhuis, A. A., Stuart, M. C. A., Fernandez Landaluce, T., Fausti, D., Rudolf, P., & Picchioni, F. (2008). Cross-Linking of Multiwalled Carbon Nanotubes with Polymeric Amines. Macromolecules, 41(16), 6141-6146. doi:10.1021/ma800869w | es_ES |
dc.description.references | O’Bryan, G., Yang, E. L., Zifer, T., Wally, K., Skinner, J. L., & Vance, A. L. (2010). Nanotube surface functionalization effects in blended multiwalled carbon nanotube/PVDF composites. Journal of Applied Polymer Science, 120(3), 1379-1384. doi:10.1002/app.33264 | es_ES |
dc.description.references | Bose, S., Khare, R. A., & Moldenaers, P. (2010). Assessing the strengths and weaknesses of various types of pre-treatments of carbon nanotubes on the properties of polymer/carbon nanotubes composites: A critical review. Polymer, 51(5), 975-993. doi:10.1016/j.polymer.2010.01.044 | es_ES |
dc.description.references | Cross, M. M. (1965). Rheology of non-Newtonian fluids: A new flow equation for pseudoplastic systems. Journal of Colloid Science, 20(5), 417-437. doi:10.1016/0095-8522(65)90022-x | es_ES |
dc.description.references | Williams, M. L., Landel, R. F., & Ferry, J. D. (1955). The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids. Journal of the American Chemical Society, 77(14), 3701-3707. doi:10.1021/ja01619a008 | es_ES |
dc.description.references | Reig, M. J., Segui, V. J., & Zamanillo, J. D. (2005). Rheological Behavior Modeling of Recycled ABS/PC Blends Applied to Injection Molding Process. Journal of Polymer Engineering, 25(5). doi:10.1515/polyeng.2005.25.5.435 | es_ES |
dc.description.references | Lee, S. H., Kim, M. W., Kim, S. H., & Youn, J. R. (2008). Rheological and electrical properties of polypropylene/MWCNT composites prepared with MWCNT masterbatch chips. European Polymer Journal, 44(6), 1620-1630. doi:10.1016/j.eurpolymj.2008.03.017 | es_ES |