- -

Use of wet-laid techniques to form flax-polypropylene nonwovens as base substrates for eco-friendly composites by using hot-press molding

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Use of wet-laid techniques to form flax-polypropylene nonwovens as base substrates for eco-friendly composites by using hot-press molding

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Fages, Eduardo es_ES
dc.contributor.author Gironés Bernabé, Sagrario es_ES
dc.contributor.author Sánchez Nacher, Lourdes es_ES
dc.contributor.author García Sanoguera, David es_ES
dc.contributor.author Balart Gimeno, Rafael Antonio es_ES
dc.date.accessioned 2014-01-31T10:17:56Z
dc.date.issued 2012-02
dc.identifier.issn 0272-8397
dc.identifier.uri http://hdl.handle.net/10251/35297
dc.description.abstract The wet-laid process with flax (base) and polypropylene (binder) fibers has been used to obtain nonwovens for further processing by hot-press molding. Mechanical characterization of nonwovens has revealed that slight anisotropy is obtained with the wet-laid process as better tensile strength is obtained in the preferential deposition direction. The thermo-bonding process provides good cohesion to nonwovens, which is critical for further handling/shaping by hot-press molding. Flax:PP composites have been processed by stacking eight individual flax:PP nonwoven sheets and applying moderate temperature and pressure. As the amount of binder fiber is relatively low (< 30 wt%) if compared with similar systems processed by extrusion and injection molding, it is possible to obtain eco-friendly composites as the total content on natural fiber (flax) is higher than 70 wt%. Mechanical characterization of hot-pressed flax:PP composites has revealed high dependency of tensile and flexural strength on the total amount of binder fiber as this component is responsible for flax fiber embedment which is a critical parameter to ensure good fibermatrix interaction. Combination of wet-laid techniques with hot-press molding processes is interesting from both technical and environmental points of view as high natural fiber content composites with balanced properties can be obtained. POLYM. COMPOS., 2012. (c) 2011 Society of Plastics Engineers es_ES
dc.description.sponsorship This work is part of the project IPT-310000-2010-037, "ECOTEXCOMP: Research and development of textile structures useful as reinforcement of composite materials with marked ecological character" funded by the "Ministerio de Ciencia e Innovacion," with an aid of 189540.20 euros, within the "Plan Nacional de InvestigacionCientifica, Desarrollo e InnovacionTecnologica 2008-2011" and funded by the European Union through FEDER funds, Technology Fund 2007-2013, Operational Programme on R+D+i for and on behalf of the companies." It is also acknowledged the project "WET-TEX: Implementacion de la tecnologia wet-laid en el desarrollo de nuevos textiles medico-sanitario" with expedient number IMIDIC/2010/137 (total aid of 284400 euro), and the project "WET-TEX II: Implementacion de la tecnologia wet-laid en la investigacion y desarrollo de paneles para aplicaciones tecnicas a partir de residuos procedentes de la industria textil." with expedient number IMDEEA/2011/167 (total aid of 255000 euro) funded by IMPIVA and cofunded (80%) by the European Union through FEDER funds, Valencian Community Operational 2007-2012. en_EN
dc.language Inglés es_ES
dc.publisher Wiley-Blackwell es_ES
dc.relation.ispartof Polymer Composites es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Spunlaced flax/polypropylene nonwove es_ES
dc.subject Fiber composites es_ES
dc.subject Automotive industries es_ES
dc.subject Mechanical-properties es_ES
dc.subject Performance es_ES
dc.subject Technologies es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Use of wet-laid techniques to form flax-polypropylene nonwovens as base substrates for eco-friendly composites by using hot-press molding es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/pc.22147
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//IPT-310000-2010-037/ES/ECOTEXCOMP: Investigación y desarrollo de estructuras textiles aplicables como refuerzo de materiales compuestos de marcado carácter ecológico./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.description.bibliographicCitation Fages, E.; Gironés Bernabé, S.; Sánchez Nacher, L.; García Sanoguera, D.; Balart Gimeno, RA. (2012). Use of wet-laid techniques to form flax-polypropylene nonwovens as base substrates for eco-friendly composites by using hot-press molding. Polymer Composites. 33(2):253-261. doi:10.1002/pc.22147 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://onlinelibrary.wiley.com/doi/10.1002/pc.22147/abstract es_ES
dc.description.upvformatpinicio 253 es_ES
dc.description.upvformatpfin 261 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 33 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 208839
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Hargitai, H., Rácz, I., & Anandjiwala, R. D. (2008). Development of HEMP Fiber Reinforced Polypropylene Composites. Journal of Thermoplastic Composite Materials, 21(2), 165-174. doi:10.1177/0892705707083949 es_ES
dc.description.references P.A., S., Joseph, K., G., U., & Thomas, S. (2010). Surface-modified sisal fiber-reinforced eco-friendly composites: Mechanical, thermal, and diffusion studies. Polymer Composites, 32(1), 131-138. doi:10.1002/pc.21028 es_ES
dc.description.references Pan, P., Zhu, B., Dong, T., Serizawa, S., Iji, M., & Inoue, Y. (2007). Kenaf fiber/poly(ɛ-caprolactone) biocomposite with enhanced crystallization rate and mechanical properties. Journal of Applied Polymer Science, 107(6), 3512-3519. doi:10.1002/app.27470 es_ES
dc.description.references Khan, M. A., & Hassan, M. M. (2006). Effect of γ-aminopropyl trimethoxy silane on the performance of jute–polycarbonate composites. Journal of Applied Polymer Science, 100(5), 4142-4154. doi:10.1002/app.23441 es_ES
dc.description.references De Arcaya, P. A., Retegi, A., Arbelaiz, A., Kenny, J. M., & Mondragon, I. (2009). Mechanical properties of natural fibers/polyamides composites. Polymer Composites, 30(3), 257-264. doi:10.1002/pc.20558 es_ES
dc.description.references X. Li, S. Panigrahi, & L. G. Tabil. (2009). A Study on Flax Fiber-Reinforced Polyethylene Biocomposites. Applied Engineering in Agriculture, 25(4), 525-531. doi:10.13031/2013.27454 es_ES
dc.description.references John, M. J., & Anandjiwala, R. D. (2009). Chemical modification of flax reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing, 40(4), 442-448. doi:10.1016/j.compositesa.2009.01.007 es_ES
dc.description.references Leite, M. C. A. M., Furtado, C. R. G., Couto, L. O., Oliveira, F. L. B. O., & Correia, T. R. (2010). Avaliação da biodegradação de compósitos de poli(ε-caprolactona)/fibra de coco verde. Polímeros, 20(5), 339-344. doi:10.1590/s0104-14282010005000063 es_ES
dc.description.references Christian, S. J., & Billington, S. L. (2011). Mechanical response of PHB- and cellulose acetate natural fiber-reinforced composites for construction applications. Composites Part B: Engineering, 42(7), 1920-1928. doi:10.1016/j.compositesb.2011.05.039 es_ES
dc.description.references Hodzic, A., Coakley, R., Curro, R., Berndt, C. C., & Shanks, R. A. (2007). Design and Optimization of Biopolyester Bagasse Fiber Composites. Journal of Biobased Materials and Bioenergy, 1(1), 46-55. doi:10.1166/jbmb.2007.005 es_ES
dc.description.references Bax, B., & Müssig, J. (2008). Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Composites Science and Technology, 68(7-8), 1601-1607. doi:10.1016/j.compscitech.2008.01.004 es_ES
dc.description.references Bogoeva-Gaceva, G., Avella, M., Malinconico, M., Buzarovska, A., Grozdanov, A., Gentile, G., & Errico, M. E. (2007). Natural fiber eco-composites. Polymer Composites, 28(1), 98-107. doi:10.1002/pc.20270 es_ES
dc.description.references Ashori, A. (2008). Wood–plastic composites as promising green-composites for automotive industries! Bioresource Technology, 99(11), 4661-4667. doi:10.1016/j.biortech.2007.09.043 es_ES
dc.description.references Alves, C., Ferrão, P. M. C., Silva, A. J., Reis, L. G., Freitas, M., Rodrigues, L. B., & Alves, D. E. (2010). Ecodesign of automotive components making use of natural jute fiber composites. Journal of Cleaner Production, 18(4), 313-327. doi:10.1016/j.jclepro.2009.10.022 es_ES
dc.description.references Mohanty, A. K., Misra, M., & Drzal, L. T. (2002). Journal of Polymers and the Environment, 10(1/2), 19-26. doi:10.1023/a:1021013921916 es_ES
dc.description.references Larsson-Brelid, P., Wålinder, M. E. P., Westin, M., & Rowell, R. (2008). Ecobuild a Center for Development of Fully Biobased Material Systems and Furniture Applications. Molecular Crystals and Liquid Crystals, 484(1), 257/[623]-264/[630]. doi:10.1080/15421400801904666 es_ES
dc.description.references MacDougall, C. (2008). Natural Building Materials in Mainstream Construction: Lessons from the U. K. Journal of Green Building, 3(3), 1-14. doi:10.3992/jgb.3.3.1 es_ES
dc.description.references El-Sabbagh, A., Steuernagel, L., & Ziegmann, G. (2009). Processing and modeling of the mechanical behavior of natural fiber thermoplastic composite: Flax/polypropylene. Polymer Composites, 30(4), 510-519. doi:10.1002/pc.20675 es_ES
dc.description.references Aurich, T., & Mennig, G. (2001). Flow-induced fiber orientation in injection molded fit fiber reinforced polypropylene. Polymer Composites, 22(5), 680-689. doi:10.1002/pc.10570 es_ES
dc.description.references Andersons, J., Spārniņš, E., & Joffe, R. (2006). Stiffness and strength of flax fiber/polymer matrix composites. Polymer Composites, 27(2), 221-229. doi:10.1002/pc.20184 es_ES
dc.description.references Saiah, R., Sreekumar, P. A., Gopalakrishnan, P., Leblanc, N., Gattin, R., & Saiter, J. M. (2009). Fabrication and characterization of 100% green composite: Thermoplastic based on wheat flour reinforced by flax fibers. Polymer Composites, 30(11), 1595-1600. doi:10.1002/pc.20732 es_ES
dc.description.references Siaotong, B. A. C., Tabil, L. G., Panigrahi, S. A., & Crerar, W. J. (2010). Extrusion Compounding of Flax-Fiber-Reinforced Polyethylene Composites: Effects of Fiber Content and Extrusion Parameters. Journal of Natural Fibers, 7(4), 289-306. doi:10.1080/15440478.2010.527680 es_ES
dc.description.references Twite-Kabamba, E., Mechraoui, A., & Rodrigue, D. (2009). Rheological properties of polypropylene/hemp fiber composites. Polymer Composites, 30(10), 1401-1407. doi:10.1002/pc.20704 es_ES
dc.description.references S.R. Wang T.H. Yan J.H. Jiang N.L. Chen Proceedings of the 2009 International Textile Science and Technology Forum 2010 es_ES
dc.description.references H. Hargitai I. Racz R. Anandjiwala Development of HEMP Fiber Reinforced Polypropylene Composites 2007 es_ES
dc.description.references Chen, J. Y., Müller, D. H., König, C., Nießen, K., & Müssig, J. (2010). Spunlaced Flax/Polypropylene Nonwoven as Auto Interior Material: Acoustical and Fogging Performance. Journal of Biobased Materials and Bioenergy, 4(4), 330-337. doi:10.1166/jbmb.2010.1097 es_ES
dc.description.references Yan Chen, Müller, D. H., Nießen, K., & Müssig, J. (2008). Spunlaced Flax/Polypropylene Nonwoven as Auto Interior Material: Mechanical Performance. Journal of Industrial Textiles, 38(1), 69-86. doi:10.1177/1528083707087832 es_ES
dc.description.references JOLLY, M., & JAYARAMAN, K. (2006). MANUFACTURING FLAX FIBRE-REINFORCED POLYPROPYLENE COMPOSITES BY HOT-PRESSING. International Journal of Modern Physics B, 20(25n27), 4601-4606. doi:10.1142/s0217979206041756 es_ES
dc.description.references Niu, H., Jiao, X., Wang, R., & Zhou, H. (2010). Direct manufacturing of flax fibers reinforced low melting point PET composites from nonwoven mats. Fibers and Polymers, 11(2), 218-222. doi:10.1007/s12221-010-0218-2 es_ES
dc.description.references Mieck, K.-P., Lützkendorf, R., & Reussmann, T. (1996). Needle-Punched hybrid nonwovens of flax and ppfibers-textile semiproducts for manufacturing of fiber composites. Polymer Composites, 17(6), 873-878. doi:10.1002/pc.10680 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem