- -

Process behavior of compatible polymer blends

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Process behavior of compatible polymer blends

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Navarro Vidal, Raúl es_ES
dc.contributor.author López Martínez, Juan es_ES
dc.contributor.author Parres, F. es_ES
dc.contributor.author Ferrándiz Bou, Santiago es_ES
dc.date.accessioned 2014-01-31T10:21:13Z
dc.date.issued 2012-05-05
dc.identifier.issn 0021-8995
dc.identifier.uri http://hdl.handle.net/10251/35298
dc.description.abstract It is a common industrial practice to blend virgin polymer with the same polymer recycled from scrap plastic that, in general, has not undergone relevant degradation. In this article, the influence that incorporating recycled material has on injection processes, especially on the rheological behavior of the material was studied. With this aim in mind, a mixture of two materials with the same nature or composition and similar viscosity was used, which is the system that is most commonly seen in industry. The mixture studied is composed of virgin PP (polypropylene) typically found in injection processes, and recycled copolymer PP from scrap plastic. A complete characterization of the materials and applied existing models was carried out to predict the mechanical behavior of the mixtures. A model to predict the behavior of the mixtures during processing, based on the rheological characteristics of the materials used was developed. This predictive model has been experimentally validated using filling tests in injection molding machines, as well as by specific simulation software. © 2011 Wiley Periodicals, Inc. es_ES
dc.language Inglés es_ES
dc.publisher Wiley-Blackwell es_ES
dc.relation.ispartof Journal of Applied Polymer Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Blend es_ES
dc.subject Mechanical recycling es_ES
dc.subject Rheology es_ES
dc.subject Simulation es_ES
dc.subject Viscosity es_ES
dc.subject Compatible polymers es_ES
dc.subject Industrial practices es_ES
dc.subject Injection process es_ES
dc.subject Mechanical behavior es_ES
dc.subject Predictive models es_ES
dc.subject Process behavior es_ES
dc.subject Recycled materials es_ES
dc.subject Rheological behaviors es_ES
dc.subject Rheological characteristics es_ES
dc.subject Simulation software es_ES
dc.subject Two-materials es_ES
dc.subject Virgin polymers es_ES
dc.subject Characterization es_ES
dc.subject Computer simulation es_ES
dc.subject Mixtures es_ES
dc.subject Polymer blends es_ES
dc.subject Polypropylenes es_ES
dc.subject Recycling es_ES
dc.subject Software testing es_ES
dc.subject Scrap metal reprocessing es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.subject.classification INGENIERIA DE LOS PROCESOS DE FABRICACION es_ES
dc.title Process behavior of compatible polymer blends es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/app.35260
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.description.bibliographicCitation Navarro Vidal, R.; López Martínez, J.; Parres, F.; Ferrándiz Bou, S. (2012). Process behavior of compatible polymer blends. Journal of Applied Polymer Science. 124(3):2485-2493. doi:10.1002/app.35260 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://onlinelibrary.wiley.com/doi/10.1002/app.35260/abstract;jsessionid=5F77095865E108DC6E44D39064ABDAC3.f04t04 es_ES
dc.description.upvformatpinicio 2485 es_ES
dc.description.upvformatpfin 2493 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 124 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 229134
dc.description.references Lucchetta, G., Bariani, P. F., & Knight, W. A. (2006). A New Approach to the Optimization of Blends Composition in Injection Moulding of Recycled Polymers. CIRP Annals, 55(1), 465-468. doi:10.1016/s0007-8506(07)60460-0 es_ES
dc.description.references Navarro, R., Ferrándiz, S., López, J., & Seguí, V. J. (2008). The influence of polyethylene in the mechanical recycling of polyethylene terephtalate. Journal of Materials Processing Technology, 195(1-3), 110-116. doi:10.1016/j.jmatprotec.2007.04.126 es_ES
dc.description.references Frigione, M. (2010). Recycling of PET bottles as fine aggregate in concrete. Waste Management, 30(6), 1101-1106. doi:10.1016/j.wasman.2010.01.030 es_ES
dc.description.references Sánchez-Soto, M., Rossa, A., Sánchez, A. J., & Gámez-Pérez, J. (2008). Blends of HDPE wastes: Study of the properties. Waste Management, 28(12), 2565-2573. doi:10.1016/j.wasman.2007.10.010 es_ES
dc.description.references Clavería, I., Javierre, C., & Ponz, L. (2005). Method for generation of rheological model to characterize non-conventional injection molding by means of spiral mold. Journal of Materials Processing Technology, 162-163, 477-483. doi:10.1016/j.jmatprotec.2005.02.065 es_ES
dc.description.references Bariani, P. F., Salvador, M., & Lucchetta, G. (2007). Development of a test method for the rheological characterization of polymers under the injection molding process conditions. Journal of Materials Processing Technology, 191(1-3), 119-122. doi:10.1016/j.jmatprotec.2007.03.089 es_ES
dc.description.references Scaffaro, R., & La Mantia, F. P. (2002). Characterization of monopolymer blend of virgin and recycled polyamide 6. Polymer Engineering & Science, 42(12), 2412-2417. doi:10.1002/pen.11127 es_ES
dc.description.references Javierre, C., Clavería, I., Ponz, L., Aísa, J., & Fernández, A. (2007). Influence of the recycled material percentage on the rheological behaviour of HDPE for injection moulding process. Waste Management, 27(5), 656-663. doi:10.1016/j.wasman.2006.03.005 es_ES
dc.description.references Boronat, T., Segui, V. J., Peydro, M. A., & Reig, M. J. (2009). Influence of temperature and shear rate on the rheology and processability of reprocessed ABS in injection molding process. Journal of Materials Processing Technology, 209(5), 2735-2745. doi:10.1016/j.jmatprotec.2008.06.013 es_ES
dc.description.references Kukaleva, N., Simon, G. P., & Kosior, E. (2003). Modification of recycled high-density polyethylene by low-density and linear-low-density polyethylenes. Polymer Engineering & Science, 43(1), 26-39. doi:10.1002/pen.10002 es_ES
dc.description.references Bagley, E. B. (1957). End Corrections in the Capillary Flow of Polyethylene. Journal of Applied Physics, 28(5), 624-627. doi:10.1063/1.1722814 es_ES
dc.description.references Shenoy, A. V., & Saini, D. R. (1984). Rheological models for unified curves for simplified design calculations in polymer processing. Rheologica Acta, 23(4), 368-377. doi:10.1007/bf01329189 es_ES
dc.description.references Chowdhury, R., Banerji, M. S., & Shivakumar, K. (2007). Polymer blends of carboxylated butadiene-acrylonitrile copolymer (nitrile rubber) and polyamide 6 developed in twin screw extrusion. Journal of Applied Polymer Science, 104(1), 372-377. doi:10.1002/app.24858 es_ES
dc.description.references Peltzer, M., Navarro, R., López, J., & Jiménez, A. (2010). Evaluation of the melt stabilization performance of hydroxytyrosol (3,4-dihydroxy-phenylethanol) in polypropylene. Polymer Degradation and Stability, 95(9), 1636-1641. doi:10.1016/j.polymdegradstab.2010.05.021 es_ES
dc.description.references Pospı́šil, J., Horák, Z., Pilař, J., Billingham, N. ., Zweifel, H., & Nešpůrek, S. (2003). Influence of testing conditions on the performance and durability of polymer stabilisers in thermal oxidation. Polymer Degradation and Stability, 82(2), 145-162. doi:10.1016/s0141-3910(03)00210-6 es_ES
dc.description.references Hernández, R., Peña, J. J., Irusta, L., & Santamarı́a, A. (2000). The effect of a miscible and an immiscible polymeric modifier on the mechanical and rheological properties of PVC. European Polymer Journal, 36(5), 1011-1025. doi:10.1016/s0014-3057(99)00146-9 es_ES
dc.description.references Kola?�ak, J., Fambri, L., Pegoretti, A., Penati, A., & Goberti, P. (2002). Prediction of the creep of heterogeneous polymer blends: Rubber-toughened polypropylene/poly(styrene-co-acrylonitrile). Polymer Engineering & Science, 42(1), 161-169. doi:10.1002/pen.10937 es_ES
dc.description.references Quintanilla, J. (1999). Microstructure and properties of random heterogeneous materials: A review of theoretical results. Polymer Engineering & Science, 39(3), 559-585. doi:10.1002/pen.11446 es_ES
dc.description.references Greco, R., & Iavarone, M. (2000). Influence of low molecular weight ABS species on properties of PC/ABS systems. Polymer Engineering & Science, 40(7), 1701-1715. doi:10.1002/pen.11302 es_ES
dc.description.references Kola?�k, J., Fambri, L., Pegoretti, A., & Penati, A. (2000). Prediction of the gas permeability of heterogeneous polymer blends. Polymer Engineering & Science, 40(1), 127-131. doi:10.1002/pen.11145 es_ES
dc.description.references Robeson, L. M., & Berner, R. A. (2001). Mechanical properties of emulsion polymer blends. Journal of Polymer Science Part B: Polymer Physics, 39(11), 1093-1106. doi:10.1002/polb.1086 es_ES
dc.description.references Silva, A. L. N., Rocha, M. C. G., & Coutinho, F. M. B. (2002). Study of rheological behavior of elastomer/polypropylene blends. Polymer Testing, 21(3), 289-293. doi:10.1016/s0142-9418(01)00084-8 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem