- -

Digital Signal Processing Techniques to Improve Time Resolution in Positron Emission Tomography

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Digital Signal Processing Techniques to Improve Time Resolution in Positron Emission Tomography

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Monzó Ferrer, José María es_ES
dc.contributor.author Esteve Bosch, Raul es_ES
dc.contributor.author Lerche, Christoph Werner es_ES
dc.contributor.author Ferrando Jódar, Néstor es_ES
dc.contributor.author Toledo Alarcón, José Francisco es_ES
dc.contributor.author Aliaga Varea, Ramón José es_ES
dc.contributor.author Herrero Bosch, Vicente es_ES
dc.contributor.author Mora Mas, Francisco José es_ES
dc.date.accessioned 2014-01-31T19:28:39Z
dc.date.issued 2011-08
dc.identifier.issn 0018-9499
dc.identifier.uri http://hdl.handle.net/10251/35300
dc.description.abstract Coincidence time resolution is one of the most important issues in PET detectors. Improving this resolution is required to increase the noise equivalent count rate (NECR) that reduces the noise in the reconstructed images. The aim of this work is to evaluate the behavior and time resolution of different proposed time pick-off algorithms in order to select the best configuration for our PET system. The experimental setup used for this research is composed by two monolithic LSO crystals+ PSPMT detectors and an FPGA based PET data acquisition system (DAQ). The acquired signals are sampled using a 12-bit 70 MHz analog to digital converter (ADC) per channel. The setup has no centralized electronics for trigger and event time extraction. Consequently, events for each detector head are processed independently and all the signals are acquired in the same way. Time resolution in this kind of systems can be improved by means of digital processing techniques and using different shapings for the last dynode signals. Four digital algorithms extracting time information from the acquired pulses have been evaluated: (1) Amplitude bipolar digital constant fraction discriminator (BCFD), (2) charge BCFD, (3) interpolated amplitude BCFD and (4) interpolated charge BCFD. Two different architectures for the interpolation algorithm have been used (one-sample and two-sample interpolation), which allow us to work with two different FPGA internal sampling frequencies: 140 MHz and 210 MHz. The results show the importance of selecting the right algorithm and parameters. Time coincidence resolution in our hardware system can be improved by up to 6.9 ns FWHM depending on the chosen digital algorithm programmed on the FPGA. The measurements with our setup reveal that charge based algorithms are less sensitive to signal noise and generate better results than amplitude algorithms. The best configuration achieves a FWHM resolution close to 1.8 ns. © 2006 IEEE. es_ES
dc.description.sponsorship Manuscript received June 15, 2010; revised October 23, 2010, February 19, 2011; accepted March 31, 2011. Date of publication May 05, 2011; date of current version August 17, 2011. This work was supported in part by the Spanish Ministry of Innovation and Science (MICINN) under Research Project FIS2010-21216-C02-02. en_EN
dc.format.extent 8 es_ES
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers (IEEE) es_ES
dc.relation.ispartof IEEE Transactions on Nuclear Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Constant fraction discriminator es_ES
dc.subject Digital signal processing es_ES
dc.subject Field-programmable gate array (FPGA) es_ES
dc.subject Positron emission tomography (PET) es_ES
dc.subject Time resolution es_ES
dc.subject Timing algorithms es_ES
dc.subject Constant fraction discriminators es_ES
dc.subject Digital signals es_ES
dc.subject Positron emission es_ES
dc.subject Algorithms es_ES
dc.subject Analog to digital conversion es_ES
dc.subject Detectors es_ES
dc.subject Discriminators es_ES
dc.subject Field programmable gate arrays (FPGA) es_ES
dc.subject Interpolation es_ES
dc.subject Positrons es_ES
dc.subject Positron emission tomography es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Digital Signal Processing Techniques to Improve Time Resolution in Positron Emission Tomography es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1109/TNS.2011.2140382
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//FIS2010-21216-C02-02/ES/DESARROLLO DE LA ELECTRONICA PARA DIAGNOSTICO DE ENFERMEDADES NEURODEGENERATIVAS./ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Aplicaciones de las Tecnologías de la Información - Institut Universitari d'Aplicacions de les Tecnologies de la Informació es_ES
dc.description.bibliographicCitation Monzó Ferrer, JM.; Esteve Bosch, R.; Lerche, CW.; Ferrando Jódar, N.; Toledo Alarcón, JF.; Aliaga Varea, RJ.; Herrero Bosch, V.... (2011). Digital Signal Processing Techniques to Improve Time Resolution in Positron Emission Tomography. IEEE Transactions on Nuclear Science. 58(4):1613-1620. https://doi.org/10.1109/TNS.2011.2140382 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1109/TNS.2011.2140382 es_ES
dc.description.upvformatpinicio 1613 es_ES
dc.description.upvformatpfin 1620 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 58 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 206194
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem