- -

Portfolio Selection with Multiple Time Horizons: A Mean Variance - Stochastic Goal Programming Approach

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Portfolio Selection with Multiple Time Horizons: A Mean Variance - Stochastic Goal Programming Approach

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ballestero, Enrique es_ES
dc.contributor.author García Bernabeu, Ana María es_ES
dc.date.accessioned 2014-02-03T08:26:07Z
dc.date.issued 2013
dc.identifier.issn 0315-5986
dc.identifier.uri http://hdl.handle.net/10251/35310
dc.description.abstract Standard approaches to portfolio selection from classical Markowitz mean-variance model require using a time horizon of historical returns over a period that the investor defines in a conventional way. To avoid arbitrary choice of the time horizon, this paper proposes a satisfying compromise solution relying on mean variance - stochastic goal programming (EV-SGP), where the goals are defined from the different time horizons under consideration. As the information on returns provided by each horizon is of different quality and reliability, critical parameters in this method are Arrow's absolute risk aversion (ARA) coefficients and the investor's preferences for each horizon. After formulating the proposed method, a suitable technique to determine the ARA coefficients in our context is given in a strict way according to Arrow's risk theory. An actual numerical example is developed throughout the paper leading to consistent results. The sensitivity analysis shows robust solutions. A generalization of results requires further examples. es_ES
dc.language Inglés es_ES
dc.publisher University of Toronto Press es_ES
dc.relation.ispartof Information Systems and Operational Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Portfolio selection es_ES
dc.subject Time horizon es_ES
dc.subject Risk aversion es_ES
dc.subject Investor's preferences es_ES
dc.subject Mean variance- stochastic goal programming es_ES
dc.subject.classification ECONOMIA APLICADA es_ES
dc.title Portfolio Selection with Multiple Time Horizons: A Mean Variance - Stochastic Goal Programming Approach es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.3138/infor.50.3.106
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Economía y Ciencias Sociales - Departament d'Economia i Ciències Socials es_ES
dc.description.bibliographicCitation Ballestero, E.; García Bernabeu, AM. (2013). Portfolio Selection with Multiple Time Horizons: A Mean Variance - Stochastic Goal Programming Approach. Information Systems and Operational Research. 50(3):106-116. doi:10.3138/infor.50.3.106 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.3138/infor.50.3.106 es_ES
dc.description.upvformatpinicio 106 es_ES
dc.description.upvformatpfin 116 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 50 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 237691
dc.identifier.eissn 1916-0615
dc.description.references Aouni, B., Ben Abdelaziz, F., & Martel, J.-M. (2005). Decision-maker’s preferences modeling in the stochastic goal programming. European Journal of Operational Research, 162(3), 610-618. doi:10.1016/j.ejor.2003.10.035 es_ES
dc.description.references Arenas Parra, M., Bilbao Terol, A., & Rodrı́guez Urı́a, M. V. (2001). A fuzzy goal programming approach to portfolio selection. European Journal of Operational Research, 133(2), 287-297. doi:10.1016/s0377-2217(00)00298-8 es_ES
dc.description.references Arrow, K.J. (1965), Aspects of the Theory of Risk-Bearing, Academic Bookstore: Helsinki. es_ES
dc.description.references Ballestero, E., Pérez-Gladish, B., Arenas-Parra, M., & Bilbao-Terol, A. (2009). Selecting Portfolios Given Multiple Eurostoxx-Based Uncertainty Scenarios: A Stochastic Goal Programming Approach from Fuzzy Betas. INFOR: Information Systems and Operational Research, 47(1), 59-70. doi:10.3138/infor.47.1.59 es_ES
dc.description.references Ballestero, E., & Pla-Santamaria, D. (2003). Portfolio selection on the Madrid Exchange: a compromise programming model. International Transactions in Operational Research, 10(1), 33-51. doi:10.1111/1475-3995.00391 es_ES
dc.description.references Ballestero, E., & Pla-Santamaria, D. (2004). Selecting portfolios for mutual funds. Omega, 32(5), 385-394. doi:10.1016/j.omega.2004.02.003 es_ES
dc.description.references Ballestero, E., & Pla-Santamaria, D. (2005). Grading the performance of market indicators with utility benchmarks selected from Footsie: a 2000 case study. Applied Economics, 37(18), 2147-2160. doi:10.1080/00036840500278053 es_ES
dc.description.references Ballestero, E. (2001). Stochastic goal programming: A mean–variance approach. European Journal of Operational Research, 131(3), 476-481. doi:10.1016/s0377-2217(00)00084-9 es_ES
dc.description.references Ballestero, E. (2005). Using Stochastic Goal Programming: Some Applications to Management and a Case of Industrial Production. INFOR: Information Systems and Operational Research, 43(2), 63-77. doi:10.1080/03155986.2005.11732717 es_ES
dc.description.references Ballestero, E. (2005). Mean‐Semivariance Efficient Frontier: A Downside Risk Model for Portfolio Selection. Applied Mathematical Finance, 12(1), 1-15. doi:10.1080/1350486042000254015 es_ES
dc.description.references Ballestero, E., Bravo, M., Pérez-Gladish, B., Arenas-Parra, M., & Plà-Santamaria, D. (2012). Socially Responsible Investment: A multicriteria approach to portfolio selection combining ethical and financial objectives. European Journal of Operational Research, 216(2), 487-494. doi:10.1016/j.ejor.2011.07.011 es_ES
dc.description.references Balzer, L. A. (1994). Measuring Investment Risk. The Journal of Investing, 3(3), 47-58. doi:10.3905/joi.3.3.47 es_ES
dc.description.references Ben Abdelaziz, F., & Masri, H. (2005). Stochastic programming with fuzzy linear partial information on probability distribution. European Journal of Operational Research, 162(3), 619-629. doi:10.1016/j.ejor.2003.10.049 es_ES
dc.description.references Bilbao, A., Arenas, M., Jiménez, M., Perez Gladish, B., & Rodríguez, M. V. (2006). An extension of Sharpe’s single-index model: portfolio selection with expert betas. Journal of the Operational Research Society, 57(12), 1442-1451. doi:10.1057/palgrave.jors.2602133 es_ES
dc.description.references Borch, K. (1969). A Note on Uncertainty and Indifference Curves. The Review of Economic Studies, 36(1), 1. doi:10.2307/2296336 es_ES
dc.description.references Bravo, M., Pla-Santamaria, D., & Garcia-Bernabeu, A. (2010). Portfolio Selection from Multiple Benchmarks: A Goal Programming Approach to an Actual Case. Journal of Multi-Criteria Decision Analysis, 17(5-6), 155-166. doi:10.1002/mcda.460 es_ES
dc.description.references Copeland, T. E. and Weston, J. F. (1988), Financial Theory and Corporate Policy, Addison-Wesley, Reading, Massachusetts. es_ES
dc.description.references Elton, J.E. and Gruber, M.J. (1984), Modern Portfolio Theory and Investment Analysis, John Wiley & Sons, New York. es_ES
dc.description.references Feldstein, M. S. (1969). Mean-Variance Analysis in the Theory of Liquidity Preference and Portfolio Selection. The Review of Economic Studies, 36(1), 5. doi:10.2307/2296337 es_ES
dc.description.references Huang, J.-J., Tzeng, G.-H., & Ong, C.-S. (2006). A novel algorithm for uncertain portfolio selection. Applied Mathematics and Computation, 173(1), 350-359. doi:10.1016/j.amc.2005.04.074 es_ES
dc.description.references Kallberg, J. G., & Ziemba, W. T. (1983). Comparison of Alternative Utility Functions in Portfolio Selection Problems. Management Science, 29(11), 1257-1276. doi:10.1287/mnsc.29.11.1257 es_ES
dc.description.references Konno, H., & Yamazaki, H. (1991). Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market. Management Science, 37(5), 519-531. doi:10.1287/mnsc.37.5.519 es_ES
dc.description.references Lin, C.-M., Huang, J.-J., Gen, M., & Tzeng, G.-H. (2006). Recurrent neural network for dynamic portfolio selection. Applied Mathematics and Computation, 175(2), 1139-1146. doi:10.1016/j.amc.2005.08.031 es_ES
dc.description.references Markowitz, H. (1952). Portfolio Selection. The Journal of Finance, 7(1), 77. doi:10.2307/2975974 es_ES
dc.description.references Ong, C.-S., Jih-Jeng Huang, & Tzeng, G.-H. (2005). A novel hybrid model for portfolio selection. Applied Mathematics and Computation, 169(2), 1195-1210. doi:10.1016/j.amc.2004.10.080 es_ES
dc.description.references Pendaraki, K., Doumpos, M., & Zopounidis, C. (2004). Towards a goal programming methodology for constructing equity mutual fund portfolios. Journal of Asset Management, 4(6), 415-428. doi:10.1057/palgrave.jam.2240120 es_ES
dc.description.references PEREZGLADISH, B., JONES, D., TAMIZ, M., & BILBAOTEROL, A. (2007). An interactive three-stage model for mutual funds portfolio selection☆. Omega, 35(1), 75-88. doi:10.1016/j.omega.2005.04.003 es_ES
dc.description.references Pratt, J. W. (1964). Risk Aversion in the Small and in the Large. Econometrica, 32(1/2), 122. doi:10.2307/1913738 es_ES
dc.description.references Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83. doi:10.1504/ijssci.2008.017590 es_ES
dc.description.references Sharpe, W. F. (1994). The Sharpe Ratio. The Journal of Portfolio Management, 21(1), 49-58. doi:10.3905/jpm.1994.409501 es_ES
dc.description.references Sortino, F. A., & Forsey, H. J. (1996). On the Use and Misuse of Downside Risk. The Journal of Portfolio Management, 22(2), 35-42. doi:10.3905/jpm.1996.35 es_ES
dc.description.references Sortino, F. A., & van der Meer, R. (1991). Downside risk. The Journal of Portfolio Management, 17(4), 27-31. doi:10.3905/jpm.1991.409343 es_ES
dc.description.references Steuer, R. E., Qi, Y., & Hirschberger, M. (2006). Suitable-portfolio investors, nondominated frontier sensitivity, and the effect of multiple objectives on standard portfolio selection. Annals of Operations Research, 152(1), 297-317. doi:10.1007/s10479-006-0137-1 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem