- -

A genetic algorithm for the unrelated parallel machine scheduling problemwith sequence dependent setup times

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A genetic algorithm for the unrelated parallel machine scheduling problemwith sequence dependent setup times

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vallada Regalado, Eva es_ES
dc.contributor.author Ruiz García, Rubén es_ES
dc.date.accessioned 2014-02-07T11:57:43Z
dc.date.issued 2011-06-16
dc.identifier.issn 0377-2217
dc.identifier.uri http://hdl.handle.net/10251/35412
dc.description.abstract In this work a genetic algorithm is presented for the unrelated parallel machine scheduling problem in which machine and job sequence dependent setup times are considered. The proposed genetic algorithm includes a fast local search and a local search enhanced crossover operator. Two versions of the algorithm are obtained after extensive calibrations using the Design of Experiments (DOE) approach. We review, evaluate and compare the proposed algorithm against the best methods known from the literature. We also develop a benchmark of small and large instances to carry out the computational experiments. After an exhaustive computational and statistical analysis we can conclude that the proposed method shows an excellent performance overcoming the rest of the evaluated methods in a comprehensive benchmark set of instances. es_ES
dc.description.sponsorship The authors are indebted to the referees and editor for the many constructive comments that have significantly improved the paper. This work is partially funded by the Spanish Ministry of Science and Innovation, under the project "SMPA - Advanced Parallel Multiobjective Sequencing: Practical and Theoretical Advances" with reference DPI2008-03511/DPI. The authors should also thank the IMPIVA - Institute for the Small and Medium Valencian Enterprise, for the project OSC with references IMIDIC/2008/137, IMIDIC/2009/198 and IMIDIC/2010/175 and the Polytechnic University of Valencia, for the project PPAR with reference 3147. Eva Vallada is also partly funded by the Government of Comunitat Valenciana under a grant (BEST 2009). The authors are also indebted with Dario Diotallevi for his help in coding some of the re-implemented methods from the literature used in the tests. en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof European Journal of Operational Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Parallel machine es_ES
dc.subject Scheduling es_ES
dc.subject Makespan es_ES
dc.subject Setup times es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title A genetic algorithm for the unrelated parallel machine scheduling problemwith sequence dependent setup times es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1016/j.ejor.2011.01.011
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2008-03511/ES/SMPA: SECUENCIACION MULTIOBJETIVO PARALELA AVANZADA: AVANCES TEORICOS Y PRACTICOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation Vallada Regalado, E.; Ruiz García, R. (2011). A genetic algorithm for the unrelated parallel machine scheduling problemwith sequence dependent setup times. European Journal of Operational Research. 211:612-622. https://doi.org/10.1016/j.ejor.2011.01.011 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.ejor.2011.01.011 es_ES
dc.description.upvformatpinicio 612 es_ES
dc.description.upvformatpfin 622 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 211 es_ES
dc.relation.senia 216608
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Generalitat Valenciana es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem