- -

Local search methods for the flowshop scheduling problem with flowtime minimization

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Local search methods for the flowshop scheduling problem with flowtime minimization

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Quan-Ke Pan es_ES
dc.contributor.author Ruiz García, Rubén es_ES
dc.date.accessioned 2014-02-14T10:55:26Z
dc.date.issued 2012-10-01
dc.identifier.issn 0377-2217
dc.identifier.uri http://hdl.handle.net/10251/35658
dc.description.abstract Flowshop scheduling is a very active research area. This problem still attracts a considerable amount of interest despite the sheer amount of available results. Total flowtime minimization of a flowshop has been actively studied and many effective algorithms have been proposed in the last few years. New best solutions have been found for common benchmarks at a rapid pace. However, these improvements many times come at the cost of sophisticated algorithms. Complex methods hinder potential applications and are difficult to extend to small problem variations. Replicability of results is also a challenge. In this paper, we examine simple and easy to implement methods that at the same time result in state-of-the-art performance. The first two proposed methods are based on the well known Iterated Local Search (ILS) and Iterated Greedy (IG) frameworks, which have been applied with great success to other flowshop problems. Additionally, we present extensions of these methods that work over populations, something that we refer to as population-based ILS (pILS) and population-based IG (pIGA), respectively. We calibrate the presented algorithms by means of the Design of Experiments (DOE) approach. Extensive comparative evaluations are carried out against the most recent techniques for the considered problem in the literature. The results of a comprehensive computational and statistical analysis show that the presented algorithms are very effective. Furthermore, we show that, despite their simplicity, the presented methods are able to improve 12 out of 120 best known solutions of Taillard¿s flowshop benchmark with total flowtime criterion. es_ES
dc.description.sponsorship This research is partially supported by National Science Foundation of China under Grants 61174187, 60874075, and Basic scientific research foundation of Northeast University under Grant N110208001, and Science Foundation of Shandong Province, China (BS2010DX005). Ruben Ruiz is partially funded by the Spanish Ministry of Science and Innovation, under the project "SMPA - Advanced Parallel Multiobjective Sequencing: Practical and Theoretical Advances" with reference DPI2008-03511/DPI, by the Small and Medium Industry of the Generalitat Valenciana (IMPIVA) and by the European Union through the European Regional Development Fund (FEDER) inside the R + D program "Programa de I + D para Institutos Tecnologicos de la Red IMPIVA" during the year 2010, with Project Number IMDEEA/2011/142. en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof European Journal of Operational Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Scheduling es_ES
dc.subject Flowshop es_ES
dc.subject Flowtime es_ES
dc.subject Local search es_ES
dc.subject Metaheuristics es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title Local search methods for the flowshop scheduling problem with flowtime minimization es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.ejor.2012.04.034
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//60874075/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//61174187/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NEU/N110208001/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Natural Science Foundation of Shandong Province//BS2010DX005/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2008-03511/ES/SMPA: SECUENCIACION MULTIOBJETIVO PARALELA AVANZADA: AVANCES TEORICOS Y PRACTICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/IMPIVA//IMDEEA%2F2011%2F142/ES/TÉCNICAS AVANZADAS PARA SECUENCIACIÓN EN ENTORNOS REALISTAS (TASER)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation Quan-Ke Pan; Ruiz García, R. (2012). Local search methods for the flowshop scheduling problem with flowtime minimization. European Journal of Operational Research. 222(1):31-43. https://doi.org/10.1016/j.ejor.2012.04.034 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.ejor.2012.04.034 es_ES
dc.description.upvformatpinicio 31 es_ES
dc.description.upvformatpfin 43 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 222 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 238733
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Instituto de la Pequeña y Mediana Industria de la Generalitat Valenciana es_ES
dc.contributor.funder National Natural Science Foundation of China es_ES
dc.contributor.funder Northeastern University, China es_ES
dc.contributor.funder Natural Science Foundation of Shandong Province es_ES
dc.contributor.funder European Regional Development Fund es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem