- -

Evolutionary-aided negotiation model for bilateral bargaining in Ambient Intelligence domains with complex utility functions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evolutionary-aided negotiation model for bilateral bargaining in Ambient Intelligence domains with complex utility functions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sanchez-Anguix, Víctor es_ES
dc.contributor.author Valero Cubas, Soledad es_ES
dc.contributor.author Julian Inglada, Vicente Javier es_ES
dc.contributor.author Botti Navarro, Vicente Juan es_ES
dc.contributor.author García Fornes, Ana María es_ES
dc.date.accessioned 2014-02-17T16:01:50Z
dc.date.issued 2013-02-10
dc.identifier.issn 0020-0255
dc.identifier.uri http://hdl.handle.net/10251/35735
dc.description.abstract Ambient Intelligence aims to offer personalized services and easier ways of interaction between people and systems. Since several users and systems may coexist in these environments, it is quite possible that entities with opposing preferences need to cooperate to reach their respective goals. Automated negotiation is pointed as one of the mechanisms that may provide a solution to this kind of problems. In this article, a multi-issue bilateral bargaining model for Ambient Intelligence domains is presented where it is assumed that agents have computational bounded resources and do not know their opponents' preferences. The main goal of this work is to provide negotiation models that obtain efficient agreements while maintaining the computational cost low. A niching genetic algorithm is used before the negotiation process to sample one's own utility function (self-sampling). During the negotiation process, genetic operators are applied over the opponent's and one's own offers in order to sample new offers that are interesting for both parties. Results show that the proposed model is capable of outperforming similarity heuristics which only sample before the negotiation process and of obtaining similar results to similarity heuristics which have access to all of the possible offers. (C) 2010 Elsevier Inc. All rights reserved. es_ES
dc.description.sponsorship This work is supported by TIN2008-04446, PROMETEO/2008/051, TIN2009-13839-C03-01, CSD2007-00022 of the Spanish government, and FPU Grant AP2008-00600 awarded to V.Sanchez-Anguix. en_EN
dc.format.extent 22 es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Information Sciences es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Automated negotiation es_ES
dc.subject Bilateral bargaining es_ES
dc.subject Agreement technologies es_ES
dc.subject Evolutionary computation es_ES
dc.subject Multi-agent systems es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Evolutionary-aided negotiation model for bilateral bargaining in Ambient Intelligence domains with complex utility functions es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1016/j.ins.2010.11.018
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CSD2007-00022/ES/Agreement Technologies/ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//AP2008-00600/ES/AP2008-00600/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TIN2008-04446/ES/UNA PLATAFORMA PARA SISTEMAS MULTIAGENTE ABIERTOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO08%2F2008%2F051/ES/Advances on Agreement Technologies for Computational Entities (atforce)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TIN2009-13839-C03-01/ES/Organizaciones Virtuales Adaptativas: Arquitecturas Y Metodos De Desarrollo/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Sanchez-Anguix, V.; Valero Cubas, S.; Julian Inglada, VJ.; Botti Navarro, VJ.; García Fornes, AM. (2013). Evolutionary-aided negotiation model for bilateral bargaining in Ambient Intelligence domains with complex utility functions. Information Sciences. 222:25-46. https://doi.org/10.1016/j.ins.2010.11.018 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.ins.2010.11.018 es_ES
dc.description.upvformatpinicio 25 es_ES
dc.description.upvformatpfin 46 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 222 es_ES
dc.relation.senia 41516
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Generalitat Valenciana es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem