- -

New high-pressure phase and equation of state of Ce2Zr2O8

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

New high-pressure phase and equation of state of Ce2Zr2O8

Show simple item record

Files in this item

dc.contributor.author Errandonea, Daniel es_ES
dc.contributor.author Kumar, R.S. es_ES
dc.contributor.author Achary, S.N. es_ES
dc.contributor.author Gomis Hilario, Oscar es_ES
dc.contributor.author Manjón Herrera, Francisco Javier es_ES
dc.contributor.author Shukla, R. es_ES
dc.contributor.author Tyagi, A.K. es_ES
dc.date.accessioned 2014-02-21T12:32:43Z
dc.date.available 2014-02-21T12:32:43Z
dc.date.issued 2012-03-08
dc.identifier.issn 0021-8979
dc.identifier.uri http://hdl.handle.net/10251/35868
dc.description.abstract In this paper we report a new high-pressure rhombohedral phase of Ce2Zr2O8 observed in high-pressure angle-dispersive x-ray diffraction and Raman spectroscopy studies up to nearly 12 GPa. The ambient-pressure cubic phase of Ce2Zr2O8 transforms to a rhombohedral structure beyond 5 GPa with a feeble distortion in the lattice. The pressure evolution of the unit-cell volume showed a change in compressibility above 5 GPa. The unit-cell parameters of the high-pressure rhombohedral phase at 12.1 GPa are a h = 14.6791(3) Å, c h = 17.9421(5) Å, and V = 3348.1(1) Å3. The structure relations between the parent cubic (P213) and rhombohedral (P32) phases were obtained via group-subgroup relations. All the Raman modes of the cubic phase showed linear evolution with pressure, with the hardest one at 197 cm¿1. Some Raman modes of the high-pressure phase have a non-linear evolution with pressure, and softening of one low-frequency mode with pressure is found. The compressibility, equation of state, and pressure coefficients of Raman modes of Ce2Zr2O8 are also reported. © 2012 American Institute of Physics es_ES
dc.language Inglés es_ES
dc.publisher American Institute of Physics (AIP) es_ES
dc.relation.ispartof Journal of Applied Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject high pressure es_ES
dc.subject Crystal structure es_ES
dc.subject x-ray diffraction es_ES
dc.subject powders es_ES
dc.subject fluorite es_ES
dc.subject raman spectra es_ES
dc.subject phase transitions es_ES
dc.subject Oxidation es_ES
dc.subject Equations of state es_ES
dc.subject rietveld refinement es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title New high-pressure phase and equation of state of Ce2Zr2O8 es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1063/1.3692807
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica - Centre de Tecnologies Físiques: Acústica, Materials i Astrofísica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Diseño para la Fabricación y Producción Automatizada - Institut de Disseny per a la Fabricació i Producció Automatitzada es_ES
dc.description.bibliographicCitation Errandonea, D.; Kumar, R.; Achary, S.; Gomis Hilario, O.; Manjón Herrera, FJ.; Shukla, R.; Tyagi, A. (2012). New high-pressure phase and equation of state of Ce2Zr2O8. Journal of Applied Physics. 111:535191-5351910. doi:10.1063/1.3692807 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1063/1.3692807 es_ES
dc.description.upvformatpinicio 535191 es_ES
dc.description.upvformatpfin 5351910 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 111 es_ES
dc.relation.senia 213439
dc.identifier.eissn 1089-7550
dc.description.references Wuensch, B. (2000). Connection between oxygen-ion conductivity of pyrochlore fuel-cell materials and structural change with composition and temperature. Solid State Ionics, 129(1-4), 111-133. doi:10.1016/s0167-2738(99)00320-3 es_ES
dc.description.references Loong, C. K., Richardson, J. W., & Ozawa, M. (1995). Crystal Phases, Defects, and Dynamics of Adsorbed Hydroxyl Groups and Water in Pure and Lanthanide-Modified Zirconia: A Neutron-Scattering Study. Journal of Catalysis, 157(2), 636-644. doi:10.1006/jcat.1995.1329 es_ES
dc.description.references Ewing, R. C. (1999). Nuclear waste forms for actinides. Proceedings of the National Academy of Sciences, 96(7), 3432-3439. doi:10.1073/pnas.96.7.3432 es_ES
dc.description.references Subramanian, M. A., Aravamudan, G., & Subba Rao, G. V. (1983). Oxide pyrochlores — A review. Progress in Solid State Chemistry, 15(2), 55-143. doi:10.1016/0079-6786(83)90001-8 es_ES
dc.description.references Zhang, F. X., Wang, J. W., Lian, J., Lang, M. K., Becker, U., & Ewing, R. C. (2008). Phase Stability and Pressure Dependence of Defect Formation inGd2Ti2O7andGd2Zr2O7Pyrochlores. Physical Review Letters, 100(4). doi:10.1103/physrevlett.100.045503 es_ES
dc.description.references Ewing, R. C., Weber, W. J., & Lian, J. (2004). Nuclear waste disposal—pyrochlore (A2B2O7): Nuclear waste form for the immobilization of plutonium and «minor» actinides. Journal of Applied Physics, 95(11), 5949-5971. doi:10.1063/1.1707213 es_ES
dc.description.references Xiao, H. Y., Zhang, F. X., Gao, F., Lang, M., Ewing, R. C., & Weber, W. J. (2010). Zirconate pyrochlores under high pressure. Physical Chemistry Chemical Physics, 12(39), 12472. doi:10.1039/c0cp00278j es_ES
dc.description.references Zhang, F. X., Lian, J., Becker, U., Wang, L. M., Hu, J., Saxena, S., & Ewing, R. C. (2007). Structural distortions and phase transformations in Sm2Zr2O7 pyrochlore at high pressures. Chemical Physics Letters, 441(4-6), 216-220. doi:10.1016/j.cplett.2007.05.018 es_ES
dc.description.references Zhang, F. X., Lian, J., Becker, U., Ewing, R. C., Hu, J., & Saxena, S. K. (2007). High-pressure structural changes in theGd2Zr2O7pyrochlore. Physical Review B, 76(21). doi:10.1103/physrevb.76.214104 es_ES
dc.description.references Zhang, F. X., Lang, M., Becker, U., Ewing, R. C., & Lian, J. (2008). High pressure phase transitions and compressibilities of Er[sub 2]Zr[sub 2]O[sub 7] and Ho[sub 2]Zr[sub 2]O[sub 7]. Applied Physics Letters, 92(1), 011909. doi:10.1063/1.2830832 es_ES
dc.description.references Xiao, H. Y., Gao, F., & Weber, W. J. (2009). Ab initioinvestigation of phase stability ofY2Ti2O7andY2Zr2O7under high pressure. Physical Review B, 80(21). doi:10.1103/physrevb.80.212102 es_ES
dc.description.references Garg, N., Pandey, K. K., Murli, C., Shanavas, K. V., Mandal, B. P., Tyagi, A. K., & Sharma, S. M. (2008). Decomposition of lanthanum hafnate at high pressures. Physical Review B, 77(21). doi:10.1103/physrevb.77.214105 es_ES
dc.description.references Sanjay Kumar, N. R., Chandra Shekar, N. V., & Sahu, P. C. (2008). Pressure induced structural transformation of pyrochlore Gd2Zr2O7. Solid State Communications, 147(9-10), 357-359. doi:10.1016/j.ssc.2008.06.028 es_ES
dc.description.references Zhang, F. X., & Saxena, S. K. (2005). Structural changes and pressure-induced amorphization in rare earth titanates RE2Ti2O7 (RE: Gd, Sm) with pyrochlore structure. Chemical Physics Letters, 413(1-3), 248-251. doi:10.1016/j.cplett.2005.07.094 es_ES
dc.description.references Zhang, F. X., Manoun, B., Saxena, S. K., & Zha, C. S. (2005). Structure change of pyrochlore Sm2Ti2O7 at high pressures. Applied Physics Letters, 86(18), 181906. doi:10.1063/1.1925307 es_ES
dc.description.references Kumar, R. S., Cornelius, A. L., Nicol, M. F., Kam, K. C., Cheetham, A. K., & Gardner, J. S. (2006). Pressure-induced structural transitions in Tb-pyrochlore oxides. Applied Physics Letters, 88(3), 031903. doi:10.1063/1.2165212 es_ES
dc.description.references Scott, P. R., Midgley, A., Musaev, O., Muthu, D. V. S., Singh, S., Suryanarayanan, R., … Kruger, M. B. (2011). High-pressure synchrotron X-ray diffraction study of the pyrochlores: Ho2Ti2O7, Y2Ti2O7and Tb2Ti2O7. High Pressure Research, 31(1), 219-227. doi:10.1080/08957959.2010.548333 es_ES
dc.description.references Surblé, S., Heathman, S., Raison, P. E., Bouëxière, D., Popa, K., & Caciuffo, R. (2010). Pressure-induced structural transition in Ln2Zr2O7 (Ln = Ce, Nd, Gd) pyrochlores. Physics and Chemistry of Minerals, 37(10), 761-767. doi:10.1007/s00269-010-0374-3 es_ES
dc.description.references Fu, Q. (2003). Active Nonmetallic Au and Pt Species on Ceria-Based Water-Gas Shift Catalysts. Science, 301(5635), 935-938. doi:10.1126/science.1085721 es_ES
dc.description.references Deluga, G. A. (2004). Renewable Hydrogen from Ethanol by Autothermal Reforming. Science, 303(5660), 993-997. doi:10.1126/science.1093045 es_ES
dc.description.references Rodriguez, J. A., Ma, S., Liu, P., Hrbek, J., Evans, J., & Perez, M. (2007). Activity of CeOx and TiOx Nanoparticles Grown on Au(111) in the Water-Gas Shift Reaction. Science, 318(5857), 1757-1760. doi:10.1126/science.1150038 es_ES
dc.description.references Arai, S., Muto, S., Sasaki, T., Ukyo, Y., Kuroda, K., & Saka, H. (2006). In Situ Observation of Reversible Oxygen Absorption/Release of Ceria-Zirconia Solid Solution with Pt Particles by TEM and EELS. Electrochemical and Solid-State Letters, 9(1), E1. doi:10.1149/1.2130310 es_ES
dc.description.references Thomson, J. B., Robert Armstrong, A., & Bruce, P. G. (1999). An Oxygen-Rich Pyrochlore with Fluorite Composition. Journal of Solid State Chemistry, 148(1), 56-62. doi:10.1006/jssc.1999.8347 es_ES
dc.description.references Thomson, J. B., Armstrong, A. R., & Bruce, P. G. (1996). A New Class of Pyrochlore Solid Solution Formed by Chemical Intercalation of Oxygen. Journal of the American Chemical Society, 118(45), 11129-11133. doi:10.1021/ja961202r es_ES
dc.description.references SASAKI, T., UKYO, Y., KURODA, K., ARAI, S., MUTO, S., & SAKA, H. (2004). Crystal Structure of Ce2Zr2O7 and .BETA.-Ce2Zr2O7.5. Journal of the Ceramic Society of Japan, 112(1308), 440-444. doi:10.2109/jcersj.112.440 es_ES
dc.description.references Kishimoto, H., Omata, T., Otsuka-Yao-Matsuo, S., Ueda, K., Hosono, H., & Kawazoe, H. (2000). Crystal structure of metastable κ-CeZrO4 phase possessing an ordered arrangement of Ce and Zr ions. Journal of Alloys and Compounds, 312(1-2), 94-103. doi:10.1016/s0925-8388(00)01168-3 es_ES
dc.description.references Achary, S. N., Sali, S. K., Kulkarni, N. K., Krishna, P. S. R., Shinde, A. B., & Tyagi, A. K. (2009). Intercalation/Deintercalation of Oxygen: A Sequential Evolution of Phases in Ce2O3/CeO2−ZrO2Pyrochlores. Chemistry of Materials, 21(24), 5848-5859. doi:10.1021/cm902450q es_ES
dc.description.references Baidya, T., Hegde, M. S., & Gopalakrishnan, J. (2007). Oxygen-Release/Storage Properties of Ce0.5M0.5O2(M = Zr, Hf) Oxides:  Interplay of Crystal Chemistry and Electronic Structure. The Journal of Physical Chemistry B, 111(19), 5149-5154. doi:10.1021/jp070525e es_ES
dc.description.references Yashima, M., Sasaki, S., Kakihana, M., Yamaguchi, Y., Arashi, H., & Yoshimura, M. (1994). Oxygen-induced structural change of the tetragonal phase around the tetragonal–cubic phase boundary in ZrO2–YO1.5solid solutions. Acta Crystallographica Section B Structural Science, 50(6), 663-672. doi:10.1107/s0108768194006257 es_ES
dc.description.references Omata, T., Kishimoto, H., Otsuka-Yao-Matsuo, S., Ohtori, N., & Umesaki, N. (1999). Vibrational Spectroscopic and X-Ray Diffraction Studies of Cerium Zirconium Oxides with Ce/Zr Composition Ratio=1 Prepared by Reduction and Successive Oxidation of t′-(Ce0.5Zr0.5)O2 Phase. Journal of Solid State Chemistry, 147(2), 573-583. doi:10.1006/jssc.1999.8420 es_ES
dc.description.references Errandonea, D., & Manjón, F. J. (2008). Pressure effects on the structural and electronic properties of ABX4 scintillating crystals. Progress in Materials Science, 53(4), 711-773. doi:10.1016/j.pmatsci.2008.02.001 es_ES
dc.description.references Wang, Z., Saxena, S. K., Pischedda, V., Liermann, H. P., & Zha, C. S. (2001). In situx-ray diffraction study of the pressure-induced phase transformation in nanocrystallineCeO2. Physical Review B, 64(1). doi:10.1103/physrevb.64.012102 es_ES
dc.description.references Dewhurst, J. K., & Lowther, J. E. (2001). Highly coordinated metal dioxides in the cotunnite structure. Physical Review B, 64(1). doi:10.1103/physrevb.64.014104 es_ES
dc.description.references Leger, J. M., Tomaszewski, P. E., Atouf, A., & Pereira, A. S. (1993). Pressure-induced structural phase transitions in zirconia under high pressure. Physical Review B, 47(21), 14075-14083. doi:10.1103/physrevb.47.14075 es_ES
dc.description.references (2011). Journal of the American Ceramic Society, 94(3). doi:10.1111/jace.2011.94.issue-3 es_ES
dc.description.references Errandonea, D., Santamaria-Perez, D., Bondarenko, T., & Khyzhun, O. (2010). New high-pressure phase of HfTiO4 and ZrTiO4 ceramics. Materials Research Bulletin, 45(11), 1732-1735. doi:10.1016/j.materresbull.2010.06.061 es_ES
dc.description.references Mao, H. K., Xu, J., & Bell, P. M. (1986). Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. Journal of Geophysical Research, 91(B5), 4673. doi:10.1029/jb091ib05p04673 es_ES
dc.description.references Klotz, S., Chervin, J.-C., Munsch, P., & Le Marchand, G. (2009). Hydrostatic limits of 11 pressure transmitting media. Journal of Physics D: Applied Physics, 42(7), 075413. doi:10.1088/0022-3727/42/7/075413 es_ES
dc.description.references Errandonea, D., Kumar, R. S., Ruiz-Fuertes, J., Segura, A., & Haussühl, E. (2011). High-pressure study of substrate material ScAlMgO4. Physical Review B, 83(14). doi:10.1103/physrevb.83.144104 es_ES
dc.description.references Dewaele, A., Datchi, F., Loubeyre, P., & Mezouar, M. (2008). High pressure–high temperature equations of state of neon and diamond. Physical Review B, 77(9). doi:10.1103/physrevb.77.094106 es_ES
dc.description.references Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N., & Hausermann, D. (1996). Two-dimensional detector software: From real detector to idealised image or two-theta scan. High Pressure Research, 14(4-6), 235-248. doi:10.1080/08957959608201408 es_ES
dc.description.references Kraus, W., & Nolze, G. (1996). POWDER CELL – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography, 29(3), 301-303. doi:10.1107/s0021889895014920 es_ES
dc.description.references Errandonea, D., Meng, Y., Somayazulu, M., & Häusermann, D. (2005). Pressure-induced transition in titanium metal: a systematic study of the effects of uniaxial stress. Physica B: Condensed Matter, 355(1-4), 116-125. doi:10.1016/j.physb.2004.10.030 es_ES
dc.description.references Birch, F. (1978). Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300°K. Journal of Geophysical Research, 83(B3), 1257. doi:10.1029/jb083ib03p01257 es_ES
dc.description.references Pruneda, J. M., & Artacho, E. (2005). First-principles study of structural, elastic, and bonding properties of pyrochlores. Physical Review B, 72(8). doi:10.1103/physrevb.72.085107 es_ES
dc.description.references Otsuka-Yao-Matsuo, S., Omata, T., Izu, N., & Kishimoto, H. (1998). Oxygen Release Behavior of CeZrO4Powders and Appearance of New Compoundsκand t*. Journal of Solid State Chemistry, 138(1), 47-54. doi:10.1006/jssc.1998.7753 es_ES
dc.description.references Kourouklis, G. A., Jayaraman, A., & Espinosa, G. P. (1988). High-pressure Raman study ofCeO2to 35 GPa and pressure-induced phase transformation from the fluorite structure. Physical Review B, 37(8), 4250-4253. doi:10.1103/physrevb.37.4250 es_ES
dc.description.references Duclos, S. J., Vohra, Y. K., Ruoff, A. L., Jayaraman, A., & Espinosa, G. P. (1988). High-pressure x-ray diffraction study ofCeO2to 70 GPa and pressure-induced phase transformation from the fluorite structure. Physical Review B, 38(11), 7755-7758. doi:10.1103/physrevb.38.7755 es_ES


This item appears in the following Collection(s)

Show simple item record