- -

High-pressure lattice dynamical study of bulk and nanocrystalline In2O3

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

High-pressure lattice dynamical study of bulk and nanocrystalline In2O3

Show full item record

Garcia Domene, B.; Ortiz, HM.; Gomis Hilario, O.; Sans, JA.; Manjón Herrera, FJ.; Muñoz, A.; Rodríguez-Hernández, P.... (2012). High-pressure lattice dynamical study of bulk and nanocrystalline In2O3. Journal of Applied Physics. 112:1235111-1235117. https://doi.org/10.1063/1.4769747

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/35869

Files in this item

Item Metadata

Title: High-pressure lattice dynamical study of bulk and nanocrystalline In2O3
Author: Garcia Domene, Braulio Ortiz, H. M. Gomis Hilario, Oscar Sans, J. A. Manjón Herrera, Francisco Javier Muñoz, A. Rodríguez-Hernández, P. Achary, S. N. Errandonea, D. Martínez-García, D. Romero, A. H. Singhal, A. Tyagi, A. K.
UPV Unit: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Instituto de Diseño para la Fabricación y Producción Automatizada - Institut de Disseny per a la Fabricació i Producció Automatitzada
Issued date:
Abstract:
The effect of pressure on the vibrational properties of bulk and nanocrystallinepowders of cubic bixbyite-type In2O3 has been investigated at room temperature by means of Raman spectroscopy up to 31.6 and 30¿GPa, respectively. ...[+]
Subjects: ozone , phase transitions , Nanocrystals , raman spectra , high pressure , Ab initio calculations , nanocrystalline materials , nanopowders , Raman scattering , x-ray diffraction
Copyrigths: Reserva de todos los derechos
Source:
Journal of Applied Physics. (issn: 0021-8979 ) (eissn: 1089-7550 )
DOI: 10.1063/1.4769747
Publisher:
American Institute of Physics (AIP)
Publisher version: http://dx.doi.org/10.1063/1.4769747
Project ID:
info:eu-repo/grantAgreement/MICINN//MAT2010-21270-C04-01/ES/SINTESIS Y CARACTERIZACION OPTICA, ELECTRONICA, ESTRUCTURAL Y VIBRACIONAL DE NUEVOS MATERIALES BAJO CONDICIONES EXTREMAS DE PRESION Y TEMPERATURA/
...[+]
info:eu-repo/grantAgreement/MICINN//MAT2010-21270-C04-01/ES/SINTESIS Y CARACTERIZACION OPTICA, ELECTRONICA, ESTRUCTURAL Y VIBRACIONAL DE NUEVOS MATERIALES BAJO CONDICIONES EXTREMAS DE PRESION Y TEMPERATURA/
info:eu-repo/grantAgreement/UPV//PAID-05-11-0914/
info:eu-repo/grantAgreement/MICINN//MAT2010-21270-C04-03/ES/MATERIALES, NANOMATERIALES Y AGREGRADOS BAJO CONDICIONES EXTREMAS. PROPIEDADES ELECTRONICAS Y DINAMICAS DESDE METODOS AB INITIO/
info:eu-repo/grantAgreement/UPV//PAID-06-11-0966/
info:eu-repo/grantAgreement/MICINN//MAT2010-21270-C04-04/ES/CRECIMIENTO Y CARACTERIZACION DE NANOESTRUCTURAS DE OXIDOS METALICOS BAJO ALTAS PRESIONES/
info:eu-repo/grantAgreement/CONACyT//J-152153-F/
[-]
Thanks:
Research financed by the Spanish MEC under Grant No. MAT2010-21270-C04-01/03/04 and from Vicerrectorado de Investigacion de la Universitat Politecnica de Valencia under Projects UPV2011-0914 PAID-05-11 and UPV2011-0966 ...[+]
Type: Artículo

References

Granqvist, C. G. (1993). Transparent conductive electrodes for electrochromic devices: A review. Applied Physics A Solids and Surfaces, 57(1), 19-24. doi:10.1007/bf00331211

Mizoguchi, H., & Woodward, P. M. (2004). Electronic Structure Studies of Main Group Oxides Possessing Edge-Sharing Octahedra:  Implications for the Design of Transparent Conducting Oxides. Chemistry of Materials, 16(25), 5233-5248. doi:10.1021/cm049249w

King, P. D. C., Veal, T. D., Fuchs, F., Wang, C. Y., Payne, D. J., Bourlange, A., … McConville, C. F. (2009). Band gap, electronic structure, and surface electron accumulation of cubic and rhombohedralIn2O3. Physical Review B, 79(20). doi:10.1103/physrevb.79.205211 [+]
Granqvist, C. G. (1993). Transparent conductive electrodes for electrochromic devices: A review. Applied Physics A Solids and Surfaces, 57(1), 19-24. doi:10.1007/bf00331211

Mizoguchi, H., & Woodward, P. M. (2004). Electronic Structure Studies of Main Group Oxides Possessing Edge-Sharing Octahedra:  Implications for the Design of Transparent Conducting Oxides. Chemistry of Materials, 16(25), 5233-5248. doi:10.1021/cm049249w

King, P. D. C., Veal, T. D., Fuchs, F., Wang, C. Y., Payne, D. J., Bourlange, A., … McConville, C. F. (2009). Band gap, electronic structure, and surface electron accumulation of cubic and rhombohedralIn2O3. Physical Review B, 79(20). doi:10.1103/physrevb.79.205211

Hotovy, I., Pezoldt, J., Kadlecikova, M., Kups, T., Spiess, L., Breza, J., … Rehacek, V. (2010). Structural characterization of sputtered indium oxide films deposited at room temperature. Thin Solid Films, 518(16), 4508-4511. doi:10.1016/j.tsf.2009.12.018

Erhart, P., Klein, A., Egdell, R. G., & Albe, K. (2007). Band structure of indium oxide: Indirect versus direct band gap. Physical Review B, 75(15). doi:10.1103/physrevb.75.153205

Karazhanov, S. Z., Ravindran, P., Vajeeston, P., Ulyashin, A., Finstad, T. G., & Fjellvåg, H. (2007). Phase stability, electronic structure, and optical properties of indium oxide polytypes. Physical Review B, 76(7). doi:10.1103/physrevb.76.075129

Breeze, A. J., Schlesinger, Z., Carter, S. A., & Brock, P. J. (2001). Charge transport inTiO2/MEH−PPVpolymer photovoltaics. Physical Review B, 64(12). doi:10.1103/physrevb.64.125205

Bel Hadj Tahar, R., Ban, T., Ohya, Y., & Takahashi, Y. (1998). Tin doped indium oxide thin films: Electrical properties. Journal of Applied Physics, 83(5), 2631-2645. doi:10.1063/1.367025

Xirouchaki, C., Kiriakidis, G., Pedersen, T. F., & Fritzsche, H. (1996). Photoreduction and oxidation of as‐deposited microcrystalline indium oxide. Journal of Applied Physics, 79(12), 9349-9352. doi:10.1063/1.362612

Tang, C. W., & VanSlyke, S. A. (1987). Organic electroluminescent diodes. Applied Physics Letters, 51(12), 913-915. doi:10.1063/1.98799

Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackay, K., Friend, R. H., … Holmes, A. B. (1990). Light-emitting diodes based on conjugated polymers. Nature, 347(6293), 539-541. doi:10.1038/347539a0

Lee, B. H., Iee Gon Kim, Sung Woo Cho, & Lee, S.-H. (1997). Effect of process parameters on the characteristics of indium tin oxide thin film for flat panel display application. Thin Solid Films, 302(1-2), 25-30. doi:10.1016/s0040-6090(96)09581-8

Hsu, S.-F., Lee, C.-C., Hwang, S.-W., & Chen, C. H. (2005). Highly efficient top-emitting white organic electroluminescent devices. Applied Physics Letters, 86(25), 253508. doi:10.1063/1.1953883

Favier, F. (2001). Hydrogen Sensors and Switches from Electrodeposited Palladium Mesowire Arrays. Science, 293(5538), 2227-2231. doi:10.1126/science.1063189

Takada, T., Suzuki, K., & Nakane, M. (1993). Highly sensitive ozone sensor. Sensors and Actuators B: Chemical, 13(1-3), 404-407. doi:10.1016/0925-4005(93)85412-4

Atashbar, M. ., Gong, B., Sun, H. ., Wlodarski, W., & Lamb, R. (1999). Investigation on ozone-sensitive In2O3 thin films. Thin Solid Films, 354(1-2), 222-226. doi:10.1016/s0040-6090(99)00405-8

Pu, Z., Cao, M., Yang, J., Huang, K., & Hu, C. (2006). Controlled synthesis and growth mechanism of hematite nanorhombohedra, nanorods and nanocubes. Nanotechnology, 17(3), 799-804. doi:10.1088/0957-4484/17/3/031

Alivisatos, A. P. (1996). Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science, 271(5251), 933-937. doi:10.1126/science.271.5251.933

El-Sayed, M. A. (2001). Some Interesting Properties of Metals Confined in Time and Nanometer Space of Different Shapes. Accounts of Chemical Research, 34(4), 257-264. doi:10.1021/ar960016n

Chen, S. G., Huang, Y. F., Xiao, H. N., Liao, H. W., Long, C. G., Ye, C., & Xia, Q. (2007). Sodium dodecyl benzene sulfonate (SDBS)-aid hydrothermal synthesis of indium–tin oxide (ITO) precursor intersecting-rods. Materials Letters, 61(8-9), 1937-1942. doi:10.1016/j.matlet.2006.07.107

Singhal, A., Achary, S. N., Manjanna, J., Jayakumar, O. D., Kadam, R. M., & Tyagi, A. K. (2009). Colloidal Fe-Doped Indium Oxide Nanoparticles: Facile Synthesis, Structural, and Magnetic Properties. The Journal of Physical Chemistry C, 113(9), 3600-3606. doi:10.1021/jp8097846

Qi, J., Liu, J. F., He, Y., Chen, W., & Wang, C. (2011). Compression behavior and phase transition of cubic In2O3 nanocrystals. Journal of Applied Physics, 109(6), 063520. doi:10.1063/1.3561363

Marezio, M. (1966). Refinement of the crystal structure of In2O3 at two wavelengths. Acta Crystallographica, 20(6), 723-728. doi:10.1107/s0365110x66001749

Prewitt, C. T., Shannon, R. D., Rogers, D. B., & Sleight, A. W. (1969). C rare earth oxide-corundum transition and crystal chemistry of oxides having the corundum structure. Inorganic Chemistry, 8(9), 1985-1993. doi:10.1021/ic50079a033

Yusa, H., Tsuchiya, T., Sata, N., & Ohishi, Y. (2008). Rh2O3(II)-type structures inGa2O3andIn2O3under high pressure: Experiment and theory. Physical Review B, 77(6). doi:10.1103/physrevb.77.064107

Yusa, H., Tsuchiya, T., Tsuchiya, J., Sata, N., & Ohishi, Y. (2008). α-Gd2S3-type structure inIn2O3: Experiments and theoretical confirmation of a high-pressure polymorph in sesquioxide. Physical Review B, 78(9). doi:10.1103/physrevb.78.092107

Gurlo, A., Barsan, N., Weimar, U., Ivanovskaya, M., Taurino, A., & Siciliano, P. (2003). Polycrystalline Well-Shaped Blocks of Indium Oxide Obtained by the Sol−Gel Method and Their Gas-Sensing Properties. Chemistry of Materials, 15(23), 4377-4383. doi:10.1021/cm031114n

Yu, D., Yu, S.-H., Zhang, S., Zuo, J., Wang, D., & Qian, Y. T. (2003). Metastable Hexagonal In2O3 Nanofibers Templated from InOOH Nanofibers under Ambient Pressure. Advanced Functional Materials, 13(6), 497-501. doi:10.1002/adfm.200304303

Epifani, M., Siciliano, P., Gurlo, A., Barsan, N., & Weimar, U. (2004). Ambient Pressure Synthesis of Corundum-Type In2O3. Journal of the American Chemical Society, 126(13), 4078-4079. doi:10.1021/ja0318075

Yu, D., Wang, D., & Qian, Y. (2004). Synthesis of metastable hexagonal In2O3 nanocrystals by a precursor-dehydration route under ambient pressure. Journal of Solid State Chemistry, 177(4-5), 1230-1234. doi:10.1016/j.jssc.2003.10.030

Sorescu, M., Diamandescu, L., Tarabasanu-Mihaila, D., & Teodorescu, V. S. (2004). Nanocrystalline rhombohedral In2O3synthesized by hydrothermal and postannealing pathways. Journal of Materials Science, 39(2), 675-677. doi:10.1023/b:jmsc.0000011529.01603.fc

Hao, Y., Meng, G., Ye, C., & Zhang, L. (2005). Controlled Synthesis of In2O3Octahedrons and Nanowires. Crystal Growth & Design, 5(4), 1617-1621. doi:10.1021/cg050103z

Lee, C. H., Kim, M., Kim, T., Kim, A., Paek, J., Lee, J. W., … Lee, K. (2006). Ambient Pressure Syntheses of Size-Controlled Corundum-type In2O3Nanocubes. Journal of the American Chemical Society, 128(29), 9326-9327. doi:10.1021/ja063227o

Chen, C., Chen, D., Jiao, X., & Wang, C. (2006). Ultrathin corundum-type In2O3 nanotubes derived from orthorhombic InOOH: synthesis and formation mechanism. Chemical Communications, (44), 4632. doi:10.1039/b610120h

Xu, J. Q., Chen, Y. P., Pan, Q. Y., Xiang, Q., Cheng, Z. X., & Dong, X. W. (2007). A new route for preparing corundum-type In2O3nanorods used as gas-sensing materials. Nanotechnology, 18(11), 115615. doi:10.1088/0957-4484/18/11/115615

Zhuang, Z., Peng, Q., Liu, J., Wang, X., & Li, Y. (2007). Indium Hydroxides, Oxyhydroxides, and Oxides Nanocrystals Series. Inorganic Chemistry, 46(13), 5179-5187. doi:10.1021/ic061999f

Wang, C. Y., Dai, Y., Pezoldt, J., Lu, B., Kups, T., Cimalla, V., & Ambacher, O. (2008). Phase Stabilization and Phonon Properties of Single Crystalline Rhombohedral Indium Oxide. Crystal Growth & Design, 8(4), 1257-1260. doi:10.1021/cg700910n

Gurlo, A., Kroll, P., & Riedel, R. (2008). Metastability of Corundum-Type In2O3. Chemistry - A European Journal, 14(11), 3306-3310. doi:10.1002/chem.200701830

Fan, Y., Li, Z., Wang, L., & Zhan, J. (2009). Catanionic-surfactant-controlled morphosynthesis and gas-sensing properties of corundum-type In2O3. Nanotechnology, 20(28), 285501. doi:10.1088/0957-4484/20/28/285501

Chen, L.-Y., Wang, Z.-X., & Zhang, Z.-D. (2009). Corundum-type tubular and rod-like In2O3 nanocrystals: synthesis from designed InOOH and application in photocatalysis. New Journal of Chemistry, 33(5), 1109. doi:10.1039/b817588h

Gurlo, A., Ivanovskaya, M., Barsan, N., & Weimar, U. (2003). Corundum-type indium (III) oxide: formation under ambient conditions in Fe2O3–In2O3 system. Inorganic Chemistry Communications, 6(5), 569-572. doi:10.1016/s1387-7003(03)00047-9

White, W. B., & Keramidas, V. G. (1972). Vibrational spectra of oxides with the C-type rare earth oxide structure. Spectrochimica Acta Part A: Molecular Spectroscopy, 28(3), 501-509. doi:10.1016/0584-8539(72)80237-x

Sobotta, H., Neumann, H., Kühn, G., & Riede, V. (1990). Infrared lattice vibrations of In2O3. Crystal Research and Technology, 25(1), 61-64. doi:10.1002/crat.2170250112

Vigreux, C., Binet, L., Gourier, D., & Piriou, B. (2001). Formation by Laser Impact of Conducting β-Ga2O3–In2O3 Solid Solutions with Composition Gradients. Journal of Solid State Chemistry, 157(1), 94-101. doi:10.1006/jssc.2000.9043

Korotcenkov, G., Brinzari, V., Ivanov, M., Cerneavschi, A., Rodriguez, J., Cirera, A., … Morante, J. (2005). Structural stability of indium oxide films deposited by spray pyrolysis during thermal annealing. Thin Solid Films, 479(1-2), 38-51. doi:10.1016/j.tsf.2004.11.107

Matei Ghimbeu, C., Schoonman, J., & Lumbreras, M. (2008). Porous indium oxide thin films deposited by electrostatic spray deposition technique. Ceramics International, 34(1), 95-100. doi:10.1016/j.ceramint.2006.08.011

Wang, C. Y., Cimalla, V., Romanus, H., Kups, T., Ecke, G., Stauden, T., … Ambacher, O. (2006). Phase selective growth and properties of rhombohedral and cubic indium oxide. Applied Physics Letters, 89(1), 011904. doi:10.1063/1.2219125

Zhang, Y., Li, J., Li, Q., Zhu, L., Liu, X., Zhong, X., … Cao, X. (2007). Preparation of In2O3 ceramic nanofibers by electrospinning and their optical properties. Scripta Materialia, 56(5), 409-412. doi:10.1016/j.scriptamat.2006.10.032

Berengue, O. M., Rodrigues, A. D., Dalmaschio, C. J., Lanfredi, A. J. C., Leite, E. R., & Chiquito, A. J. (2010). Structural characterization of indium oxide nanostructures: a Raman analysis. Journal of Physics D: Applied Physics, 43(4), 045401. doi:10.1088/0022-3727/43/4/045401

Hoekstra, H. R. (1966). Phase Relationships in the Rare Earth Sesquioxides at High Pressure. Inorganic Chemistry, 5(5), 754-757. doi:10.1021/ic50039a013

Shannon, R. D. (1966). New high pressure phases having the corundum structure. Solid State Communications, 4(12), 629-630. doi:10.1016/0038-1098(66)90058-5

Atou, T., Kusaba, K., Fukuoka, K., Kikuchi, M., & Syono, Y. (1990). Shock-induced phase transition of M2O3 (M = Sc, Y, Sm, Gd, and In)-type compounds. Journal of Solid State Chemistry, 89(2), 378-384. doi:10.1016/0022-4596(90)90280-b

Liu, D., Lei, W. W., Zou, B., Yu, S. D., Hao, J., Wang, K., … Zou, G. T. (2008). High-pressure x-ray diffraction and Raman spectra study of indium oxide. Journal of Applied Physics, 104(8), 083506. doi:10.1063/1.2999369

Tao, X., Sun, L., Li, Z., & Zhao, Y. (2009). Side-by-Side In(OH)3 and In2O3 Nanotubes: Synthesis and Optical Properties. Nanoscale Research Letters, 5(2), 383-388. doi:10.1007/s11671-009-9493-5

Syassen, K. (2008). Ruby under pressure. High Pressure Research, 28(2), 75-126. doi:10.1080/08957950802235640

Hohenberg, P., & Kohn, W. (1964). Inhomogeneous Electron Gas. Physical Review, 136(3B), B864-B871. doi:10.1103/physrev.136.b864

Kresse, G., & Furthmüller, J. (1996). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6(1), 15-50. doi:10.1016/0927-0256(96)00008-0

Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169-11186. doi:10.1103/physrevb.54.11169

Kresse, G., & Hafner, J. (1993). Ab initiomolecular dynamics for liquid metals. Physical Review B, 47(1), 558-561. doi:10.1103/physrevb.47.558

Kresse, G., & Hafner, J. (1994). Ab initiomolecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Physical Review B, 49(20), 14251-14269. doi:10.1103/physrevb.49.14251

Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/physrevb.50.17953

Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758-1775. doi:10.1103/physrevb.59.1758

Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., … Burke, K. (2008). Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Physical Review Letters, 100(13). doi:10.1103/physrevlett.100.136406

Mujica, A., Rubio, A., Muñoz, A., & Needs, R. J. (2003). High-pressure phases of group-IV, III–V, and II–VI compounds. Reviews of Modern Physics, 75(3), 863-912. doi:10.1103/revmodphys.75.863

Parlinski, K., Li, Z. Q., & Kawazoe, Y. (1997). First-Principles Determination of the Soft Mode in CubicZrO2. Physical Review Letters, 78(21), 4063-4066. doi:10.1103/physrevlett.78.4063

Arora, A. K., Rajalakshmi, M., Ravindran, T. R., & Sivasubramanian, V. (2007). Raman spectroscopy of optical phonon confinement in nanostructured materials. Journal of Raman Spectroscopy, 38(6), 604-617. doi:10.1002/jrs.1684

Manjón, F. J., López-Solano, J., Ray, S., Gomis, O., Santamaría-Pérez, D., Mollar, M., … Muñoz, A. (2010). High-pressure structural and lattice dynamical study ofHgWO4. Physical Review B, 82(3). doi:10.1103/physrevb.82.035212

Machon, D., McMillan, P. F., Xu, B., & Dong, J. (2006). High-pressure study of theβ-to-αtransition inGa2O3. Physical Review B, 73(9). doi:10.1103/physrevb.73.094125

Guo, Q., Zhao, Y., Jiang, C., Mao, W. L., & Wang, Z. (2008). Phase transformation in Sm2O3 at high pressure: In situ synchrotron X-ray diffraction study and ab initio DFT calculation. Solid State Communications, 145(5-6), 250-254. doi:10.1016/j.ssc.2007.11.019

Meyer, C., Sanchez, J. P., Thomasson, J., & Itié, J. P. (1995). Mössbauer and energy-dispersive x-ray-diffraction studies of the pressure-induced crystallographic phase transition inC-typeYb2O3. Physical Review B, 51(18), 12187-12193. doi:10.1103/physrevb.51.12187

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record