Mostrar el registro sencillo del ítem
dc.contributor.author | Vilaplana Cerda, Rosario Isabel | es_ES |
dc.contributor.author | Gomis Hilario, Oscar | es_ES |
dc.contributor.author | Pérez-González, E. | es_ES |
dc.contributor.author | Ortiz, H. M. | es_ES |
dc.contributor.author | Manjón Herrera, Francisco Javier | es_ES |
dc.contributor.author | Rodríguez-Hernández, P. | es_ES |
dc.contributor.author | Muñoz, Alfonso | es_ES |
dc.contributor.author | Alonso Gutiérrez, P. | es_ES |
dc.contributor.author | Sanjuán, M.L. | es_ES |
dc.contributor.author | Ursaki, Veacheslav | es_ES |
dc.contributor.author | Tiginyanu, Ivan | es_ES |
dc.date.accessioned | 2014-02-21T12:37:43Z | |
dc.date.available | 2014-02-21T12:37:43Z | |
dc.date.issued | 2013-06-17 | |
dc.identifier.issn | 0021-8979 | |
dc.identifier.uri | http://hdl.handle.net/10251/35870 | |
dc.description.abstract | High-pressure Raman scattering measurements have been carried out in ZnGa2Se4 for both tetragonal defect chalcopyrite and defect stannite structures. Experimental results have been compared with theoretical lattice dynamics ab initio calculations and confirm that both phases exhibit different Raman-active phonons with slightly different pressure dependence. A pressure-induced phase transition to a Raman-inactive phase occurs for both phases; however, the sample with defect chalcopyrite structure requires slightly higher pressures than the sample with defect stannite structure to fully transform into the Raman-inactive phase. On downstroke, the Raman-inactive phase transforms into a phase that could be attributed to a disordered zincblende structure for both original phases; however, the sample with original defect chalcopyrite structure compressed just above 20¿GPa, where the transformation to the Raman-inactive phase is not completed, returns on downstroke mainly to its original structure but shows a new peak that does not correspond to the defect chalcopyrite phase. The pressure dependence of the Raman spectra with this new peak and those of the disordered zincblende phase is also reported and discussed. © 2013 AIP Publishing LLC | es_ES |
dc.description.sponsorship | This study was supported by the Spanish government MEC under Grants No. MAT2010-21270-C04-01/03/04, by MALTA Consolider Ingenio 2010 project (CSD2007-00045), and by the Vicerrectorado de Investigacion y Desarrollo of the Universitat Politecnica de Valencia (UPV2011-0914 PAID-05-11 and UPV2011-0966 PAID-06-11). E.P.-G., A.M., and P.R.-H. acknowledge computing time provided by Red Espanola de Supercomputacion (RES) and MALTA-Cluster. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | American Institute of Physics (AIP) | es_ES |
dc.relation.ispartof | Journal of Applied Physics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | raman spectra | es_ES |
dc.subject | phase transitions | es_ES |
dc.subject | high pressure | es_ES |
dc.subject | Raman scattering | es_ES |
dc.subject | scattering measurements | es_ES |
dc.subject | vacancies | es_ES |
dc.subject | Crystal structure | es_ES |
dc.subject | x-ray diffraction | es_ES |
dc.subject | crystal defects | es_ES |
dc.subject | Order disorder phase transitions | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | High-pressure Raman scattering study of defect chalcopyrite and defect stannite ZnGa2Se4 | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1063/1.4810854 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MAT2010-21270-C04-01/ES/SINTESIS Y CARACTERIZACION OPTICA, ELECTRONICA, ESTRUCTURAL Y VIBRACIONAL DE NUEVOS MATERIALES BAJO CONDICIONES EXTREMAS DE PRESION Y TEMPERATURA/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//CSD2007-00045/ES/MATERIA A ALTA PRESION/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MAT2010-21270-C04-03/ES/MATERIALES, NANOMATERIALES Y AGREGRADOS BAJO CONDICIONES EXTREMAS. PROPIEDADES ELECTRONICAS Y DINAMICAS DESDE METODOS AB INITIO/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-05-11-0914/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MAT2010-21270-C04-04/ES/CRECIMIENTO Y CARACTERIZACION DE NANOESTRUCTURAS DE OXIDOS METALICOS BAJO ALTAS PRESIONES/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-06-11-0966/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica - Centre de Tecnologies Físiques: Acústica, Materials i Astrofísica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Diseño para la Fabricación y Producción Automatizada - Institut de Disseny per a la Fabricació i Producció Automatitzada | es_ES |
dc.description.bibliographicCitation | Vilaplana Cerda, RI.; Gomis Hilario, O.; Pérez-González, E.; Ortiz, HM.; Manjón Herrera, FJ.; Rodríguez-Hernández, P.; Muñoz, A.... (2013). High-pressure Raman scattering study of defect chalcopyrite and defect stannite ZnGa2Se4. Journal of Applied Physics. 113:2335011-23350110. https://doi.org/10.1063/1.4810854 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1063/1.4810854 | es_ES |
dc.description.upvformatpinicio | 2335011 | es_ES |
dc.description.upvformatpfin | 23350110 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 113 | es_ES |
dc.relation.senia | 245751 | |
dc.identifier.eissn | 1089-7550 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | |
dc.contributor.funder | Universitat Politècnica de València | |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |
dc.description.references | A. MacKinnon, Tables of Numerical Data and Functional Relationships in Science and Technology, Landolt-Börnstein New Series, Group III, Vol. 17, pt. h, edited by O. Madelung, M. Schulz, and H. Weiss, (Springer-Verlag, Berlin, 1985), p. 124. | es_ES |
dc.description.references | Bernard, J. E., & Zunger, A. (1988). Ordered-vacancy-compound semiconductors: PseudocubicCdIn2Se4. Physical Review B, 37(12), 6835-6856. doi:10.1103/physrevb.37.6835 | es_ES |
dc.description.references | Jiang, X., & Lambrecht, W. R. L. (2004). Electronic band structure of ordered vacancy defect chalcopyrite compounds with formulaII−III2−VI4. Physical Review B, 69(3). doi:10.1103/physrevb.69.035201 | es_ES |
dc.description.references | Yahia, I. S., Fadel, M., Sakr, G. B., & Shenouda, S. S. (2010). Memory switching of ZnGa2Se4 thin films as a new material for phase change memories (PCMs). Journal of Alloys and Compounds, 507(2), 551-556. doi:10.1016/j.jallcom.2010.08.021 | es_ES |
dc.description.references | Yahia, I. S., Fadel, M., Sakr, G. B., Yakuphanoglu, F., Shenouda, S. S., & Farooq, W. A. (2011). Analysis of current–voltage characteristics of Al/p-ZnGa2Se4/n-Si nanocrystalline heterojunction diode. Journal of Alloys and Compounds, 509(12), 4414-4419. doi:10.1016/j.jallcom.2011.01.068 | es_ES |
dc.description.references | Hahn, H., Frank, G., Klingler, W., St�rger, A. D., & St�rger, G. (1955). Untersuchungen �ber tern�re Chalkogenide. VI. �ber Tern�re Chalkogenide des Aluminiums, Galliums und Indiums mit Zink, Cadmium und Quecksilber. Zeitschrift f�r anorganische und allgemeine Chemie, 279(5-6), 241-270. doi:10.1002/zaac.19552790502 | es_ES |
dc.description.references | Errandonea, D., Kumar, R. S., Manjón, F. J., Ursaki, V. V., & Tiginyanu, I. M. (2008). High-pressure x-ray diffraction study on the structure and phase transitions of the defect-stannite ZnGa2Se4 and defect-chalcopyrite CdGa2S4. Journal of Applied Physics, 104(6), 063524. doi:10.1063/1.2981089 | es_ES |
dc.description.references | Hanada, T., Izumi, F., Nakamura, Y., Nittono, O., Huang, Q., & Santoro, A. (1997). Neutron and electron diffraction studies of ZnGa2Se4. Physica B: Condensed Matter, 241-243, 373-375. doi:10.1016/s0921-4526(97)00592-9 | es_ES |
dc.description.references | Morón, M. C., & Hull, S. (2003). Order-disorder phase transition inZn1−xMnxGa2Se4: Long-range order parameter versusx. Physical Review B, 67(12). doi:10.1103/physrevb.67.125208 | es_ES |
dc.description.references | Morón, M. C., & Hull, S. (2005). Effect of magnetic dilution in Zn1−xMnxGa2Se4 (0<x<0.5). Journal of Applied Physics, 98(1), 013904. doi:10.1063/1.1944220 | es_ES |
dc.description.references | Morón, M. C., & Hull, S. (2007). The influence of magnetic dilution in the Zn1−xMnxGa2Se4 series with 0.5<x⩽1. Journal of Applied Physics, 102(3), 033919. doi:10.1063/1.2767273 | es_ES |
dc.description.references | Antonioli, G., Lottici, P. P., & Razzetti, C. (1989). The structure of the defect chalcopyrite ZnGa2Se4 studied by EXAFS. physica status solidi (b), 152(1), 39-49. doi:10.1002/pssb.2221520104 | es_ES |
dc.description.references | Haeuseler, H. (1978). FIR- und Ramanspektren von ternären Chalkogeniden des Galliums und Indiums mit Zink, Cadmium und Quecksilber. Journal of Solid State Chemistry, 26(4), 367-376. doi:10.1016/0022-4596(78)90171-8 | es_ES |
dc.description.references | Eifler, A., Krauss, G., Riede, V., Krämer, V., & Grill, W. (2005). Optical phonon modes and structure of ZnGa2Se4 and ZnGa2S4. Journal of Physics and Chemistry of Solids, 66(11), 2052-2057. doi:10.1016/j.jpcs.2005.09.049 | es_ES |
dc.description.references | Lottici, P. P., & Razzetti, C. (1983). A comparison of the raman spectra of ZnGa2Se4 and other gallium defect chalcopyrites. Solid State Communications, 46(9), 681-684. doi:10.1016/0038-1098(83)90506-9 | es_ES |
dc.description.references | Razzetti, C., Lottici, P. P., & Antonioli, G. (1987). Structure and lattice dynamics of nonmagnetic defective AIIBIII2XIV4 compounds and alloys. Progress in Crystal Growth and Characterization, 15(1), 43-73. doi:10.1016/0146-3535(87)90009-8 | es_ES |
dc.description.references | Attolini, G., Bini, S., Lottici, P. P., & Razzetti, C. (1992). Effects of Group III Cation Substitution in the Raman Spectra of Some Defective Chalcopyrites. Crystal Research and Technology, 27(5), 685-690. doi:10.1002/crat.2170270519 | es_ES |
dc.description.references | Takahashi, Y., Namatsu, H., Machida, K., & Minegishi, K. (1993). Measurements of Diffusion Coefficiens of Water in Electron Cryclotron Resonance Plasma SiO2. Japanese Journal of Applied Physics, 32(Part 2, No. 3B), L431-L433. doi:10.1143/jjap.32.l431 | es_ES |
dc.description.references | Ursaki, V. V., Burlakov, I. I., Tiginyanu, I. M., Raptis, Y. S., Anastassakis, E., & Anedda, A. (1999). Phase transitions in defect chalcopyrite compounds under hydrostatic pressure. Physical Review B, 59(1), 257-268. doi:10.1103/physrevb.59.257 | es_ES |
dc.description.references | Allakhverdiev, K., Gashimzade, F., Kerimova, T., Mitani, T., Naitou, T., Matsuishi, K., & Onari, S. (2003). Raman scattering under pressure in ZnGa2Se4. Journal of Physics and Chemistry of Solids, 64(9-10), 1597-1601. doi:10.1016/s0022-3697(03)00077-5 | es_ES |
dc.description.references | P. Alonso-Gutiérrez, “Estudio mediante espectroscopía Raman de la serie de semiconductores tetraédricos Zn1-xMnxGa2Se4, Colección de Estudios de Física, Vol. 78,” Ph.D. dissertation (Prensas Universitarias de Zaragoza, Zaragoza, Spain, 2009). | es_ES |
dc.description.references | Alonso-Gutiérrez, P., Sanjuán, M. L., & Morón, M. C. (2009). Thermally activated cation ordering in Zn0.5Mn0.5Ga2Se4single crystals studied by Raman scattering. physica status solidi (c), 6(5), 1182-1186. doi:10.1002/pssc.200881218 | es_ES |
dc.description.references | Caldera, D., Morocoima, M., Quintero, M., Rincon, C., Casanova, R., & Grima, P. (2011). On the crystal structure of the defective ternary compound. Solid State Communications, 151(3), 212-215. doi:10.1016/j.ssc.2010.11.031 | es_ES |
dc.description.references | H. Schwer, PhD dissertation, Universität Freiburg, 1990. | es_ES |
dc.description.references | Vilaplana, R., Gomis, O., Pérez-González, E., Ortiz, H. M., Manjón, F. J., Rodríguez-Hernández, P., … Tiginyanu, I. M. (2013). Thermally activated cation ordering in ZnGa2Se4single crystals studied by Raman scattering, optical absorption, andab initiocalculations. Journal of Physics: Condensed Matter, 25(16), 165802. doi:10.1088/0953-8984/25/16/165802 | es_ES |
dc.description.references | Fuentes-Cabrera, M., & Sankey, O. F. (2001). Theoretical study of the ordered-vacancy semiconducting compound CdAl2Se4. Journal of Physics: Condensed Matter, 13(8), 1669-1684. doi:10.1088/0953-8984/13/8/305 | es_ES |
dc.description.references | Fuentes-Cabrera, M. (2001). Ab initiostudy of the vibrational and electronic properties of CdGa2S4and CdGa2Se4under pressure. Journal of Physics: Condensed Matter, 13(45), 10117-10124. doi:10.1088/0953-8984/13/45/301 | es_ES |
dc.description.references | Vilaplana, R., Robledillo, M., Gomis, O., Sans, J. A., Manjón, F. J., Pérez-González, E., … Ursaki, V. V. (2013). Vibrational study of HgGa2S4under high pressure. Journal of Applied Physics, 113(9), 093512. doi:10.1063/1.4794096 | es_ES |
dc.description.references | Gomis, O., Vilaplana, R., Manjón, F. J., Pérez-González, E., López-Solano, J., Rodríguez-Hernández, P., … Ursaki, V. V. (2012). High-pressure optical and vibrational properties of CdGa2Se4: Order-disorder processes in adamantine compounds. Journal of Applied Physics, 111(1), 013518. doi:10.1063/1.3675162 | es_ES |
dc.description.references | Piermarini, G. J., Block, S., & Barnett, J. D. (1973). Hydrostatic limits in liquids and solids to 100 kbar. Journal of Applied Physics, 44(12), 5377-5382. doi:10.1063/1.1662159 | es_ES |
dc.description.references | Syassen, K. (2008). Ruby under pressure. High Pressure Research, 28(2), 75-126. doi:10.1080/08957950802235640 | es_ES |
dc.description.references | Mao, H. K., Xu, J., & Bell, P. M. (1986). Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. Journal of Geophysical Research, 91(B5), 4673. doi:10.1029/jb091ib05p04673 | es_ES |
dc.description.references | Perdew, J. P., Burke, K., & Ernzerhof, M. (1997). Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]. Physical Review Letters, 78(7), 1396-1396. doi:10.1103/physrevlett.78.1396 | es_ES |
dc.description.references | Manjón, F. J., Gomis, O., Rodríguez-Hernández, P., Pérez-González, E., Muñoz, A., Errandonea, D., … Ursaki, V. V. (2010). Nonlinear pressure dependence of the direct band gap in adamantine ordered-vacancy compounds. Physical Review B, 81(19). doi:10.1103/physrevb.81.195201 | es_ES |
dc.description.references | Eifler, A., Hecht, J.-D., Lippold, G., Riede, V., Grill, W., Krauß, G., & Krämer, V. (1999). Combined infrared and Raman study of the optical phonons of defect chalcopyrite single crystals. Physica B: Condensed Matter, 263-264, 806-808. doi:10.1016/s0921-4526(98)01292-7 | es_ES |
dc.description.references | Baroni, S., de Gironcoli, S., Dal Corso, A., & Giannozzi, P. (2001). Phonons and related crystal properties from density-functional perturbation theory. Reviews of Modern Physics, 73(2), 515-562. doi:10.1103/revmodphys.73.515 | es_ES |
dc.description.references | Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., … Wentzcovitch, R. M. (2009). QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 21(39), 395502. doi:10.1088/0953-8984/21/39/395502 | es_ES |
dc.description.references | Kroumova, E., Aroyo, M. I., Perez-Mato, J. M., Kirov, A., Capillas, C., Ivantchev, S., & Wondratschek, H. (2003). Bilbao Crystallographic Server : Useful Databases and Tools for Phase-Transition Studies. Phase Transitions, 76(1-2), 155-170. doi:10.1080/0141159031000076110 | es_ES |
dc.description.references | Loudon, R. (1964). The Raman effect in crystals. Advances in Physics, 13(52), 423-482. doi:10.1080/00018736400101051 | es_ES |
dc.description.references | Alonso-Gutiérrez, P., & Sanjuán, M. L. (2008). Ordinary and extraordinary phonons and photons: Raman study of anisotropy effects in the polar modes ofMnGa2Se4. Physical Review B, 78(4). doi:10.1103/physrevb.78.045212 | es_ES |
dc.description.references | Manjón, F. J., Marí, B., Serrano, J., & Romero, A. H. (2005). Silent Raman modes in zinc oxide and related nitrides. Journal of Applied Physics, 97(5), 053516. doi:10.1063/1.1856222 | es_ES |
dc.description.references | Alonso-Gutiérrez, P., Sanjuán, M. L., & Morón, M. C. (2007). A Raman Study Of Order-Disorder Phenomena In Zn1−xMnxGa2Se4 Compounds. AIP Conference Proceedings. doi:10.1063/1.2729831 | es_ES |
dc.description.references | Lulek, T. (1984). Density of states in the reciprocal lattice for a one-dimensional periodic Heisenberg magnet. Journal de Physique, 45(1), 29-34. doi:10.1051/jphys:0198400450102900 | es_ES |
dc.description.references | Frogley, M. D., Sly, J. L., & Dunstan, D. J. (1998). Pressure dependence of the direct band gap in tetrahedral semiconductors. Physical Review B, 58(19), 12579-12582. doi:10.1103/physrevb.58.12579 | es_ES |
dc.description.references | Frogley, M. D., & Dunstan, D. J. (1999). Comparability and Reliability of High-Pressure Band-Gap Data in Tetrahedral Semiconductors. physica status solidi (b), 211(1), 17-22. doi:10.1002/(sici)1521-3951(199901)211:1<17::aid-pssb17>3.0.co;2-2 | es_ES |
dc.description.references | Bilz, H., & Kress, W. (1979). Phonon Dispersion Relations in Insulators. Springer Series in Solid-State Sciences. doi:10.1007/978-3-642-81347-4 | es_ES |
dc.description.references | Grzechnik, A., Ursaki, V. V., Syassen, K., Loa, I., Tiginyanu, I. M., & Hanfland, M. (2001). Pressure-Induced Phase Transitions in Cadmium Thiogallate CdGa2Se4. Journal of Solid State Chemistry, 160(1), 205-211. doi:10.1006/jssc.2001.9224 | es_ES |
dc.description.references | Meenakshi, S., Vijyakumar, V., Godwal, B. K., Eifler, A., Orgzall, I., Tkachev, S., & Hochheimer, H. D. (2006). High pressure X-ray diffraction study of CdAl2Se4 and Raman study of AAl2Se4 (A=Hg, Zn) and CdAl2X4 (X=Se, S). Journal of Physics and Chemistry of Solids, 67(8), 1660-1667. doi:10.1016/j.jpcs.2006.02.015 | es_ES |
dc.description.references | Meenakshi, S., Vijayakumar, V., Eifler, A., & Hochheimer, H. D. (2010). Pressure-induced phase transition in defect Chalcopyrites HgAl2Se4 and CdAl2S4. Journal of Physics and Chemistry of Solids, 71(5), 832-835. doi:10.1016/j.jpcs.2010.02.007 | es_ES |
dc.description.references | Gomis, O., Vilaplana, R., Manjón, F. J., Santamaría-Pérez, D., Errandonea, D., Pérez-González, E., … Ursaki, V. V. (2013). Crystal structure of HgGa2Se4 under compression. Materials Research Bulletin, 48(6), 2128-2133. doi:10.1016/j.materresbull.2013.02.037 | es_ES |
dc.description.references | A̧lvarez-Garcı́a, J., Pérez-Rodrı́guez, A., Barcones, B., Romano-Rodrı́guez, A., Morante, J. R., Janotti, A., … Scheer, R. (2002). Polymorphism in CuInS2 epilayers: Origin of additional Raman modes. Applied Physics Letters, 80(4), 562-564. doi:10.1063/1.1435800 | es_ES |
dc.description.references | Stanbery, B. J., Kincal, S., Kim, S., Chang, C. H., Ahrenkiel, S. P., Lippold, G., … Crisalle, O. D. (2002). Epitaxial growth and characterization of CuInSe2 crystallographic polytypes. Journal of Applied Physics, 91(6), 3598-3604. doi:10.1063/1.1446234 | es_ES |
dc.description.references | Su, D. S., & Wei, S.-H. (1999). Transmission electron microscopy investigation and first-principles calculation of the phase stability in epitaxial CuInS2 and CuGaSe2 films. Applied Physics Letters, 74(17), 2483-2485. doi:10.1063/1.123014 | es_ES |