- -

On more realistic environment distributions for defining, evaluating and developing intelligence

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

On more realistic environment distributions for defining, evaluating and developing intelligence

Show simple item record

Files in this item

dc.contributor.author Hernández Orallo, José es_ES
dc.contributor.author Dowe, David L. es_ES
dc.contributor.author España Cubillo, Sergio es_ES
dc.contributor.author Hernández-Lloreda, M. Victoria es_ES
dc.contributor.author Insa Cabrera, Javier es_ES
dc.date.accessioned 2014-02-25T08:48:44Z
dc.date.issued 2011
dc.identifier.isbn 978-3-642-22886-5
dc.identifier.issn 0302-9743
dc.identifier.uri http://hdl.handle.net/10251/35938
dc.description.abstract One insightful view of the notion of intelligence is the ability to perform well in a diverse set of tasks, problems or environments. One of the key issues is therefore the choice of this set, which can be formalised as a `distribution¿. Formalising and properly defining this distribution is an important challenge to understand what intelligence is and to achieve artificial general intelligence (AGI). In this paper, we agree with previous criticisms that a universal distribution using a reference universal Turing machine (UTM) over tasks, environments, etc., is perhaps amuch too general distribution, since, e.g., the probability of other agents appearing on the scene or having some social interaction is almost 0 for many reference UTMs. Instead, we propose the notion of Darwin-Wallace distribution for environments, which is inspired by biological evolution, artificial life and evolutionary computation. However, although enlightening about where and how intelligence should excel, this distribution has so many options and is uncomputable in so many ways that we certainly need a more practical alternative. We propose the use of intelligence tests over multi-agent systems, in such a way that agents with a certified level of intelligence at a certain degree are used to construct the tests for the next degree. This constructive methodology can then be used as a more realistic intelligence test and also as a testbed for developing and evaluating AGI systems. es_ES
dc.description.sponsorship We thank the anonymous reviewers for their helpful comments. We also thank the funding from the Spanish MEC and MICINN for projects TIN2009-06078-E/TIN, Consolider-Ingenio CSD2007-00022 and TIN2010-21062- C02, for MEC FPU grant AP2006-02323, and Generalitat Valenciana for Prometeo/2008/051
dc.format.extent 10 es_ES
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation MEC-MICINN/TIN2009-06078-E/TIN es_ES
dc.relation info:eu-repo/grantAgreement/MEC//CSD2007-00022/ES/Agreement Technologies/ es_ES
dc.relation info:eu-repo/grantAgreement/MEC//AP2006-0232/ES/AP2006-0232/ es_ES
dc.relation GV/Prometeo/2008/051 es_ES
dc.relation MEC-MICINN/TIN2010-21062-C02
dc.relation.ispartof Artificial General Intelligence es_ES
dc.relation.ispartofseries Lecture Notes in Computer Science;vol. 6830
dc.rights Reserva de todos los derechos es_ES
dc.subject Intelligence es_ES
dc.subject Evolutionary Computation es_ES
dc.subject Artificial Life es_ES
dc.subject Social Intelligence es_ES
dc.subject Intelligence Test es_ES
dc.subject Universal Distribution es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title On more realistic environment distributions for defining, evaluating and developing intelligence es_ES
dc.type Capítulo de libro es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1007/978-3-642-22887-2_9
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Hernández Orallo, J.; Dowe, DL.; España Cubillo, S.; Hernández-Lloreda, MV.; Insa Cabrera, J. (2011). On more realistic environment distributions for defining, evaluating and developing intelligence. En Artificial General Intelligence. Springer Verlag (Germany). 6830:82-91. https://doi.org/10.1007/978-3-642-22887-2_9 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 4th International Conference, AGI 2011 es_ES
dc.relation.conferencedate August 3-6, 2011 es_ES
dc.relation.conferenceplace Mountain View, CA, USA es_ES
dc.relation.publisherversion http://link.springer.com/chapter/10.1007/978-3-642-22887-2_9 es_ES
dc.description.upvformatpinicio 82 es_ES
dc.description.upvformatpfin 91 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6830 es_ES
dc.relation.senia 201454
dc.contributor.funder Ministerio de Educación
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.contributor.funder Ministerio de Educación y Ciencia
dc.contributor.funder Generalitat Valenciana
dc.relation.references Dowe, D.L.: Foreword re C. S. Wallace. Computer Journal 51(5), 523–560 (2008); Christopher Stewart WALLACE (1933-2004) memorial special issue es_ES
dc.relation.references Dowe, D.L.: Minimum Message Length and statistically consistent invariant (objective?) Bayesian probabilistic inference - from (medical) “evidence”. Social Epistemology 22(4), 433–460 (2008) es_ES
dc.relation.references Dowe, D.L.: MML, hybrid Bayesian network graphical models, statistical consistency, invariance and uniqueness. In: Bandyopadhyay, P.S., Forster, M.R. (eds.) Handbook of the Philosophy of Science. Philosophy of Statistics, vol. 7, pp. 901–982. Elsevier, Amsterdam (2011) es_ES
dc.relation.references Dowe, D.L., Hajek, A.R.: A computational extension to the Turing Test. In: 4th Conf. of the Australasian Cognitive Science Society, Newcastle, Australia (1997) es_ES
dc.relation.references Goertzel, B.: The Embodied Communication Prior: A characterization of general intelligence in the context of Embodied social interaction. In: 8th IEEE International Conference on, Cognitive Informatics, ICCI 2009, pp. 38–43. IEEE, Los Alamitos (2009) es_ES
dc.relation.references Goertzel, B., Bugaj, S.V.: AGI Preschool: a framework for evaluating early-stage human-like AGIs. In: Intl. Conf. on Artificial General Intelligence (AGI 2009) (2009) es_ES
dc.relation.references Hernández-Orallo, J.: Beyond the Turing Test. J. Logic, Language & Information 9(4), 447–466 (2000) es_ES
dc.relation.references Hernández-Orallo, J.: On the computational measurement of intelligence factors. In: Meystel, A. (ed.) Performance metrics for intelligent systems workshop, pp. 1–8. National Institute of Standards and Technology, Gaithersburg (2000) es_ES
dc.relation.references Hernández-Orallo, J.: A (hopefully) non-biased universal environment class for measuring intelligence of biological and artificial systems. In: Hutter, M., et al. (eds.) Artificial General Intelligence, pp. 182–183 (2010) es_ES
dc.relation.references Hernández-Orallo, J., Dowe, D.L.: Measuring universal intelligence: Towards an anytime intelligence test. Artificial Intelligence 174(18), 1508–1539 (2010) es_ES
dc.relation.references Hernández-Orallo, J., Minaya-Collado, N.: A formal definition of intelligence based on an intensional variant of Kolmogorov complexity. In: Proc. Intl Symposium of Engineering of Intelligent Systems (EIS 1998), pp. 146–163. ICSC Press (1998) es_ES
dc.relation.references Herrmann, E., Call, J., Hernández-Lloreda, M.V., Hare, B., Tomasello, M.: Humans have evolved specialized skills of social cognition: The cultural intelligence hypothesis. Science 317(5843), 1360–1366 (2007) es_ES
dc.relation.references Hibbard, B.: Bias and No Free Lunch in Formal Measures of Intelligence. Journal of Artificial General Intelligence 1(1), 54–61 (2009) es_ES
dc.relation.references Krebs, J.R., Dawkins, R.: Animal signals: mind-reading and manipulation. Behavioural Ecology: an evolutionary approach 2, 380–402 (1984) es_ES
dc.relation.references Langton, C.G.: Artificial life: An overview. The MIT Press, Cambridge (1997) es_ES
dc.relation.references Legg, S., Hutter, M.: A collection of definitions of intelligence. In: Proc. of the 2007 Conf. on Artificial General Intelligence, pp. 17–24. IOS Press, Amsterdam (2007) es_ES
dc.relation.references Legg, S., Hutter, M.: Universal intelligence: A definition of machine intelligence. Minds and Machines 17(4), 391–444 (2007) es_ES
dc.relation.references Levin, L.A.: Universal sequential search problems. Problems of Information Transmission 9(3), 265–266 (1973) es_ES
dc.relation.references Sanghi, P., Dowe, D.L.: A computer program capable of passing IQ tests. In: Proc. 4th ICCS International Conference on Cognitive Science (ICCS 2003), Sydney, Australia, pp. 570–575 (2003) es_ES
dc.relation.references Schmidhuber, J.: A computer scientist’s view of life, the universe, and everything. In: Foundations of Computer Science, p. 201. Springer, Heidelberg (1997) es_ES
dc.relation.references Schmidhuber, J.: The Speed Prior: a new simplicity measure yielding near-optimal computable predictions. In: Kivinen, J., Sloan, R.H. (eds.) COLT 2002. LNCS (LNAI), vol. 2375, pp. 123–127. Springer, Heidelberg (2002) es_ES
dc.relation.references Solomonoff, R.J.: A formal theory of inductive inference. Part I. Information and control 7(1), 1–22 (1964) es_ES
dc.relation.references Stone, P., Veloso, M.: Towards collaborative and adversarial learning: A case study in robotic soccer. Intl. J. of Human-Computers Studies 48(1), 83–104 (1998) es_ES
dc.relation.references Tomasello, M., Herrmann, E.: Ape and human cognition: What’s the difference? Current Directions in Psychological Science 19(1), 3–8 (2010) es_ES


This item appears in the following Collection(s)

Show simple item record