- -

Numerical solutions of matrix differential models using higher-order matrix splines

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Numerical solutions of matrix differential models using higher-order matrix splines

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Defez Candel, Emilio es_ES
dc.contributor.author Hervás Jorge, Antonio es_ES
dc.contributor.author Ibáñez González, Jacinto Javier es_ES
dc.contributor.author Tung, Michael Ming-Sha es_ES
dc.date.accessioned 2014-02-26T10:49:19Z
dc.date.issued 2012-11
dc.identifier.issn 1660-5446
dc.identifier.uri http://hdl.handle.net/10251/35975
dc.description The final publication is available at http://link.springer.com/article/10.1007%2Fs00009-011-0159-z es_ES
dc.description.abstract This paper deals with the construction of approximate solution of first-order matrix linear differential equations using higher-order matrix splines. An estimation of the approximation error, an algorithm for its implementation and some illustrative examples are included. © 2011 Springer Basel AG. es_ES
dc.format.extent 18 es_ES
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Mediterranean Journal of Mathematics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Higher-order matrix splines es_ES
dc.subject Matrix linear differential equations es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Numerical solutions of matrix differential models using higher-order matrix splines es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1007/s00009-011-0159-z
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Defez Candel, E.; Hervás Jorge, A.; Ibáñez González, JJ.; Tung, MM. (2012). Numerical solutions of matrix differential models using higher-order matrix splines. Mediterranean Journal of Mathematics. 9(4):865-882. doi:10.1007/s00009-011-0159-z es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://link.springer.com/article/10.1007%2Fs00009-011-0159-z es_ES
dc.description.upvformatpinicio 865 es_ES
dc.description.upvformatpfin 882 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 212548
dc.description.references Al-Said E.A., Noor M.A.: Cubic splines method for a system of third-order boundary value problems. Appl. Math. Comput. 142, 195–204 (2003) es_ES
dc.description.references Ascher U., Mattheij R., Russell R.: Numerical solutions of boundary value problems for ordinary differential equations. Prentice Hall, New Jersey, USA (1988) es_ES
dc.description.references Barnett S.: Matrices in Control Theory. Van Nostrand, Reinhold (1971) es_ES
dc.description.references Blanes S., Casas F., Oteo J.A., Ros J.: Magnus and Fer expansion for matrix differential equations: the convergence problem. J. Phys. Appl. 31, 259–268 (1998) es_ES
dc.description.references Boggs P.T.: The solution of nonlinear systems of equations by a-stable integration techniques. SIAM J. Numer. Anal. 8(4), 767–785 (1971) es_ES
dc.description.references Defez E., Hervás A., Law A., Villanueva-Oller J., Villanueva R.: Matrixcubic splines for progressive transmission of images. J. Math. Imaging Vision 17(1), 41–53 (2002) es_ES
dc.description.references Defez E., Soler L., Hervás A., Santamaría C.: Numerical solutions of matrix differential models using cubic matrix splines. Comput. Math. Appl. 50, 693–699 (2005) es_ES
dc.description.references Defez E., Soler L., Hervás A., Tung M.M.: Numerical solutions of matrix differential models using cubic matrix splines II. Mathematical and Computer Modelling 46, 657–669 (2007) es_ES
dc.description.references Mazzia F., Trigiante A.S., Trigiante A.S.: B-spline linear multistep methods and their conitinuous extensions. SIAM J. Numer. Anal. 44(5), 1954–1973 (2006) es_ES
dc.description.references Faddeyev L.D.: The inverse problem in the quantum theory of scattering. J. Math. Physics 4(1), 72–104 (1963) es_ES
dc.description.references Flett, T.M.: Differential Analysis. Cambridge University Press (1980) es_ES
dc.description.references Golub G.H., Loan C.F.V.: Matrix Computations, second edn. The Johns Hopkins University Press, Baltimore, MD, USA (1989) es_ES
dc.description.references Graham A.: Kronecker products and matrix calculus with applications. John Wiley & Sons, New York, USA (1981) es_ES
dc.description.references Jódar L., Cortés J.C.: Rational matrix approximation with a priori error bounds for non-symmetric matrix riccati equations with analytic coefficients. IMA J. Numer. Anal. 18(4), 545–561 (1998) es_ES
dc.description.references Jódar L., Cortés J.C., Morera J.L.: Construction and computation of variable coefficient sylvester differential problems. Computers Maths. Appl. 32(8), 41–50 (1996) es_ES
dc.description.references Jódar, L., Ponsoda, E.: Continuous numerical solutions and error bounds for matrix differential equations. In: Int. Proc. First Int. Colloq. Num. Anal., pp. 73–88. VSP, Utrecht, The Netherlands (1993) es_ES
dc.description.references Jódar L., Ponsoda E.: Non-autonomous riccati-type matrix differential equations: Existence interval, construction of continuous numerical solutions and error bounds. IMA J. Numer. Anal. 15(1), 61–74 (1995) es_ES
dc.description.references Loscalzo F.R., Talbot T.D.: Spline function approximations for solutions of ordinary differential equations. SIAM J. Numer. Anal. 4(3), 433–445 (1967) es_ES
dc.description.references Marzulli P.: Global error estimates for the standard parallel shooting method. J. Comput. Appl. Math. 34, 233–241 (1991) es_ES
dc.description.references Micula G., Revnic A.: An implicit numerical spline method for systems for ode’s. Appl. Math. Comput. 111, 121–132 (2000) es_ES
dc.description.references Reid, W.T.: Riccati Differential Equations. Academic Press (1972) es_ES
dc.description.references Rektorys, K.: The method of discretization in time and partial differential equations. D. Reidel Pub. Co., Dordrecht (1982) es_ES
dc.description.references Scott, M.: Invariant imbedding and its Applications to Ordinary Differential Equations. Addison-Wesley (1973) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem