Mostrar el registro sencillo del ítem
dc.contributor.author | Defez Candel, Emilio | es_ES |
dc.contributor.author | Hervás Jorge, Antonio | es_ES |
dc.contributor.author | Ibáñez González, Jacinto Javier | es_ES |
dc.contributor.author | Tung, Michael Ming-Sha | es_ES |
dc.date.accessioned | 2014-02-26T10:49:19Z | |
dc.date.issued | 2012-11 | |
dc.identifier.issn | 1660-5446 | |
dc.identifier.uri | http://hdl.handle.net/10251/35975 | |
dc.description | The final publication is available at http://link.springer.com/article/10.1007%2Fs00009-011-0159-z | es_ES |
dc.description.abstract | This paper deals with the construction of approximate solution of first-order matrix linear differential equations using higher-order matrix splines. An estimation of the approximation error, an algorithm for its implementation and some illustrative examples are included. © 2011 Springer Basel AG. | es_ES |
dc.format.extent | 18 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Mediterranean Journal of Mathematics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Higher-order matrix splines | es_ES |
dc.subject | Matrix linear differential equations | es_ES |
dc.subject.classification | CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Numerical solutions of matrix differential models using higher-order matrix splines | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1007/s00009-011-0159-z | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Defez Candel, E.; Hervás Jorge, A.; Ibáñez González, JJ.; Tung, MM. (2012). Numerical solutions of matrix differential models using higher-order matrix splines. Mediterranean Journal of Mathematics. 9(4):865-882. doi:10.1007/s00009-011-0159-z | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://link.springer.com/article/10.1007%2Fs00009-011-0159-z | es_ES |
dc.description.upvformatpinicio | 865 | es_ES |
dc.description.upvformatpfin | 882 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.senia | 212548 | |
dc.description.references | Al-Said E.A., Noor M.A.: Cubic splines method for a system of third-order boundary value problems. Appl. Math. Comput. 142, 195–204 (2003) | es_ES |
dc.description.references | Ascher U., Mattheij R., Russell R.: Numerical solutions of boundary value problems for ordinary differential equations. Prentice Hall, New Jersey, USA (1988) | es_ES |
dc.description.references | Barnett S.: Matrices in Control Theory. Van Nostrand, Reinhold (1971) | es_ES |
dc.description.references | Blanes S., Casas F., Oteo J.A., Ros J.: Magnus and Fer expansion for matrix differential equations: the convergence problem. J. Phys. Appl. 31, 259–268 (1998) | es_ES |
dc.description.references | Boggs P.T.: The solution of nonlinear systems of equations by a-stable integration techniques. SIAM J. Numer. Anal. 8(4), 767–785 (1971) | es_ES |
dc.description.references | Defez E., Hervás A., Law A., Villanueva-Oller J., Villanueva R.: Matrixcubic splines for progressive transmission of images. J. Math. Imaging Vision 17(1), 41–53 (2002) | es_ES |
dc.description.references | Defez E., Soler L., Hervás A., Santamaría C.: Numerical solutions of matrix differential models using cubic matrix splines. Comput. Math. Appl. 50, 693–699 (2005) | es_ES |
dc.description.references | Defez E., Soler L., Hervás A., Tung M.M.: Numerical solutions of matrix differential models using cubic matrix splines II. Mathematical and Computer Modelling 46, 657–669 (2007) | es_ES |
dc.description.references | Mazzia F., Trigiante A.S., Trigiante A.S.: B-spline linear multistep methods and their conitinuous extensions. SIAM J. Numer. Anal. 44(5), 1954–1973 (2006) | es_ES |
dc.description.references | Faddeyev L.D.: The inverse problem in the quantum theory of scattering. J. Math. Physics 4(1), 72–104 (1963) | es_ES |
dc.description.references | Flett, T.M.: Differential Analysis. Cambridge University Press (1980) | es_ES |
dc.description.references | Golub G.H., Loan C.F.V.: Matrix Computations, second edn. The Johns Hopkins University Press, Baltimore, MD, USA (1989) | es_ES |
dc.description.references | Graham A.: Kronecker products and matrix calculus with applications. John Wiley & Sons, New York, USA (1981) | es_ES |
dc.description.references | Jódar L., Cortés J.C.: Rational matrix approximation with a priori error bounds for non-symmetric matrix riccati equations with analytic coefficients. IMA J. Numer. Anal. 18(4), 545–561 (1998) | es_ES |
dc.description.references | Jódar L., Cortés J.C., Morera J.L.: Construction and computation of variable coefficient sylvester differential problems. Computers Maths. Appl. 32(8), 41–50 (1996) | es_ES |
dc.description.references | Jódar, L., Ponsoda, E.: Continuous numerical solutions and error bounds for matrix differential equations. In: Int. Proc. First Int. Colloq. Num. Anal., pp. 73–88. VSP, Utrecht, The Netherlands (1993) | es_ES |
dc.description.references | Jódar L., Ponsoda E.: Non-autonomous riccati-type matrix differential equations: Existence interval, construction of continuous numerical solutions and error bounds. IMA J. Numer. Anal. 15(1), 61–74 (1995) | es_ES |
dc.description.references | Loscalzo F.R., Talbot T.D.: Spline function approximations for solutions of ordinary differential equations. SIAM J. Numer. Anal. 4(3), 433–445 (1967) | es_ES |
dc.description.references | Marzulli P.: Global error estimates for the standard parallel shooting method. J. Comput. Appl. Math. 34, 233–241 (1991) | es_ES |
dc.description.references | Micula G., Revnic A.: An implicit numerical spline method for systems for ode’s. Appl. Math. Comput. 111, 121–132 (2000) | es_ES |
dc.description.references | Reid, W.T.: Riccati Differential Equations. Academic Press (1972) | es_ES |
dc.description.references | Rektorys, K.: The method of discretization in time and partial differential equations. D. Reidel Pub. Co., Dordrecht (1982) | es_ES |
dc.description.references | Scott, M.: Invariant imbedding and its Applications to Ordinary Differential Equations. Addison-Wesley (1973) | es_ES |