dc.contributor.author |
Alba Fernández, Jesús
|
es_ES |
dc.contributor.author |
Rey Tormos, Romina María del
|
es_ES |
dc.contributor.author |
Ramis Soriano, Jaime
|
es_ES |
dc.contributor.author |
Arenas, Jorge P.
|
es_ES |
dc.date.accessioned |
2014-03-04T19:14:12Z |
|
dc.date.issued |
2011-09 |
|
dc.identifier.issn |
0137-5075 |
|
dc.identifier.uri |
http://hdl.handle.net/10251/36170 |
|
dc.description.abstract |
Characterization of sound absorbing materials is essential to predict its acoustic behaviour. The most commonly used models to do so consider the flow resistivity, porosity, and average fibre diameter as parameters to determine the acoustic impedance and sound absorbing coefficient. Besides direct experimental techniques, numerical approaches appear to be an alternative to estimate the material's parameters. In this work an inverse numerical method to obtain some parameters of a fibrous material is presented. Using measurements of the normal incidence sound absorption coefficient and then using the model proposed by Voronina, subsequent application of basic minimization techniques allows one to obtain the porosity, average fibre diameter and density of a sound absorbing material. The numerical results agree fairly well with the experimental data. |
es_ES |
dc.description.sponsorship |
This work has been supported by the Ministerio de Educacion y Ciencia-D.G. Investigacion (BIA2007-68098-C02-01 and BIA2007-68098-C02-02) and also from the Spanish Ministry of Foreign Affairs and Cooperation through the Inter-University and Scientific Research Cooperation Program (A/023748/09). |
en_EN |
dc.format.extent |
13 |
es_ES |
dc.language |
Inglés |
es_ES |
dc.publisher |
Polish Scientific Publishers |
es_ES |
dc.relation.ispartof |
Archives of Acoustics |
es_ES |
dc.rights |
Reserva de todos los derechos |
es_ES |
dc.subject |
Sound absorption |
es_ES |
dc.subject |
Fibrous materials |
es_ES |
dc.subject |
Porous material |
es_ES |
dc.subject |
Material characterization |
es_ES |
dc.subject.classification |
FISICA APLICADA |
es_ES |
dc.title |
An Inverse Method to Obtain Porosity, Fibre Diameterand Density of Fibrous Sound Absorbing Materials |
es_ES |
dc.type |
Artículo |
es_ES |
dc.embargo.lift |
10000-01-01 |
|
dc.identifier.doi |
10.2478/v10168-011-0040-x |
|
dc.relation.projectID |
info:eu-repo/grantAgreement/MEC//BIA2007-68098-C02-01/ES/PREDICCION DEL AISLAMIENTO ACUSTICO EN LA EDIFICACION/ / |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/MAEC//A%2F023748%2F09/ES/ESTUDIO SOBRE BARRERAS MEDIOAMBIENTALES CONTRA EL RUIDO EN BASE A MATERIALES RECICLADOS/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/MEC//BIA2007-68098-C02-02/ES/MODELADO DEL RUIDO TRANSMITIDO POR FLANCOS EN LA EDIFICACION/ |
es_ES |
dc.rights.accessRights |
Abierto |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica - Centre de Tecnologies Físiques: Acústica, Materials i Astrofísica |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres |
es_ES |
dc.description.bibliographicCitation |
Alba Fernández, J.; Rey Tormos, RMD.; Ramis Soriano, J.; Arenas, JP. (2011). An Inverse Method to Obtain Porosity, Fibre Diameterand Density of Fibrous Sound Absorbing Materials. Archives of Acoustics. 36(3):561-574. https://doi.org/10.2478/v10168-011-0040-x |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
http://dx.doi.org/10.2478/v10168-011-0040-x |
es_ES |
dc.description.upvformatpinicio |
561 |
es_ES |
dc.description.upvformatpfin |
574 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
36 |
es_ES |
dc.description.issue |
3 |
es_ES |
dc.relation.senia |
207615 |
|
dc.contributor.funder |
Ministerio de Educación y Ciencia |
es_ES |
dc.contributor.funder |
Ministerio de Asuntos Exteriores y Cooperación |
es_ES |
dc.description.references |
Allard, J., & Champoux, Y. (1992). New empirical equations for sound propagation in rigid frame fibrous materials. The Journal of the Acoustical Society of America, 91(6), 3346-3353. doi:10.1121/1.402824 |
es_ES |
dc.description.references |
Attenborough, K. (1983). Acoustical characteristics of rigid fibrous absorbents and granular materials. The Journal of the Acoustical Society of America, 73(3), 785-799. doi:10.1121/1.389045 |
es_ES |
dc.description.references |
Bies, D. A., & Hansen, C. H. (1980). Flow resistance information for acoustical design. Applied Acoustics, 13(5), 357-391. doi:10.1016/0003-682x(80)90002-x |
es_ES |
dc.description.references |
Champoux, Y., Stinson, M. R., & Daigle, G. A. (1991). Air‐based system for the measurement of porosity. The Journal of the Acoustical Society of America, 89(2), 910-916. doi:10.1121/1.1894653 |
es_ES |
dc.description.references |
Crocker, M. J., & Arenas, J. P. (s. f.). Use of Sound-Absorbing Materials. Handbook of Noise and Vibration Control, 696-713. doi:10.1002/9780470209707.ch57 |
es_ES |
dc.description.references |
Delany, M. E., & Bazley, E. N. (1970). Acoustical properties of fibrous absorbent materials. Applied Acoustics, 3(2), 105-116. doi:10.1016/0003-682x(70)90031-9 |
es_ES |
dc.description.references |
Dunn, I. P., & Davern, W. A. (1986). Calculation of acoustic impedance of multi-layer absorbers. Applied Acoustics, 19(5), 321-334. doi:10.1016/0003-682x(86)90044-7 |
es_ES |
dc.description.references |
Fellah, Z. E. A., Berger, S., Lauriks, W., Depollier, C., Aristégui, C., & Chapelon, J.-Y. (2003). Measuring the porosity and the tortuosity of porous materials via reflected waves at oblique incidence. The Journal of the Acoustical Society of America, 113(5), 2424-2433. doi:10.1121/1.1567275 |
es_ES |
dc.description.references |
Fellah, Z. E. A., Berger, S., Lauriks, W., Depollier, C., & Fellah, M. (2003). Measuring the porosity of porous materials having a rigid frame via reflected waves: A time domain analysis with fractional derivatives. Journal of Applied Physics, 93(1), 296-303. doi:10.1063/1.1524025 |
es_ES |
dc.description.references |
Fellah, Z. E. A., Berger, S., Lauriks, W., Depollier, C., Trompette, P., & Chapelon, J. Y. (2003). Ultrasonic measurement of the porosity and tortuosity of air-saturated random packings of beads. Journal of Applied Physics, 93(11), 9352-9359. doi:10.1063/1.1572191 |
es_ES |
dc.description.references |
Fellah, Z. E. A., Mitri, F. G., Fellah, M., Ogam, E., & Depollier, C. (2007). Ultrasonic characterization of porous absorbing materials: Inverse problem. Journal of Sound and Vibration, 302(4-5), 746-759. doi:10.1016/j.jsv.2006.12.007 |
es_ES |
dc.description.references |
Garai, M., & Pompoli, F. (2005). A simple empirical model of polyester fibre materials for acoustical applications. Applied Acoustics, 66(12), 1383-1398. doi:10.1016/j.apacoust.2005.04.008 |
es_ES |
dc.description.references |
ISO (1998), 10534-2:1998. Acoustics - determination of sound absorption coefficient and impedance in impedance tubes - Part 2: transfer-function method, International Organization for Standardization, Geneva. |
es_ES |
dc.description.references |
Miki, Y. (1990). Acoustical properties of porous materials. Modifications of Delany-Bazley models. Journal of the Acoustical Society of Japan (E), 11(1), 19-24. doi:10.1250/ast.11.19 |
es_ES |
dc.description.references |
Miki, Y. (1990). Acoustical properties of porous materials. Generalizations of empirical models. Journal of the Acoustical Society of Japan (E), 11(1), 25-28. doi:10.1250/ast.11.25 |
es_ES |
dc.description.references |
Ramis, J., Alba, J., Del Rey, R., Escuder, E., & Sanchís, V. J. (2010). Nuevos materiales absorbentes acústicos basados en fibra de kenaf. Materiales de Construcción, 60(299), 133-143. doi:10.3989/mc.2010.50809 |
es_ES |
dc.description.references |
Shoshani, Y., & Yakubov, Y. (2000). Numerical assessment of maximal absorption coefficients for nonwoven fiberwebs. Applied Acoustics, 59(1), 77-87. doi:10.1016/s0003-682x(99)00015-8 |
es_ES |
dc.description.references |
Umnova, O., Attenborough, K., Shin, H.-C., & Cummings, A. (2005). Deduction of tortuosity and porosity from acoustic reflection and transmission measurements on thick samples of rigid-porous materials. Applied Acoustics, 66(6), 607-624. doi:10.1016/j.apacoust.2004.02.005 |
es_ES |
dc.description.references |
Voronina, N. (1994). Acoustic properties of fibrous materials. Applied Acoustics, 42(2), 165-174. doi:10.1016/0003-682x(94)90005-1 |
es_ES |
dc.description.references |
Voronina, N. (1996). Improved empirical model of sound propagation through a fibrous material. Applied Acoustics, 48(2), 121-132. doi:10.1016/0003-682x(95)00055-e |
es_ES |
dc.description.references |
Voronina, N. (1998). An empirical model for elastic porous materials. Applied Acoustics, 55(1), 67-83. doi:10.1016/s0003-682x(97)00098-4 |
es_ES |
dc.description.references |
Voronina, N. (1999). An empirical model for rigid-frame porous materials with low porosity. Applied Acoustics, 58(3), 295-304. doi:10.1016/s0003-682x(98)00076-0 |
es_ES |
dc.description.references |
Voronina, N. ., & Horoshenkov, K. . (2003). A new empirical model for the acoustic properties of loose granular media. Applied Acoustics, 64(4), 415-432. doi:10.1016/s0003-682x(02)00105-6 |
es_ES |
dc.description.references |
Wang, X., Eisenbrey, J., Zeitz, M., & Sun, J. Q. (2004). Multi-stage regression analysis of acoustical properties of polyurethane foams. Journal of Sound and Vibration, 273(4-5), 1109-1117. doi:10.1016/j.jsv.2003.09.039 |
es_ES |
dc.description.references |
Wilson, D. K. (1997). Simple, relaxational models for the acoustical properties of porous media. Applied Acoustics, 50(3), 171-188. doi:10.1016/s0003-682x(96)00048-5 |
es_ES |