- -

An Inverse Method to Obtain Porosity, Fibre Diameterand Density of Fibrous Sound Absorbing Materials

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An Inverse Method to Obtain Porosity, Fibre Diameterand Density of Fibrous Sound Absorbing Materials

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Alba Fernández, Jesús es_ES
dc.contributor.author Rey Tormos, Romina María del es_ES
dc.contributor.author Ramis Soriano, Jaime es_ES
dc.contributor.author Arenas, Jorge P. es_ES
dc.date.accessioned 2014-03-04T19:14:12Z
dc.date.issued 2011-09
dc.identifier.issn 0137-5075
dc.identifier.uri http://hdl.handle.net/10251/36170
dc.description.abstract Characterization of sound absorbing materials is essential to predict its acoustic behaviour. The most commonly used models to do so consider the flow resistivity, porosity, and average fibre diameter as parameters to determine the acoustic impedance and sound absorbing coefficient. Besides direct experimental techniques, numerical approaches appear to be an alternative to estimate the material's parameters. In this work an inverse numerical method to obtain some parameters of a fibrous material is presented. Using measurements of the normal incidence sound absorption coefficient and then using the model proposed by Voronina, subsequent application of basic minimization techniques allows one to obtain the porosity, average fibre diameter and density of a sound absorbing material. The numerical results agree fairly well with the experimental data. es_ES
dc.description.sponsorship This work has been supported by the Ministerio de Educacion y Ciencia-D.G. Investigacion (BIA2007-68098-C02-01 and BIA2007-68098-C02-02) and also from the Spanish Ministry of Foreign Affairs and Cooperation through the Inter-University and Scientific Research Cooperation Program (A/023748/09). en_EN
dc.format.extent 13 es_ES
dc.language Inglés es_ES
dc.publisher Polish Scientific Publishers es_ES
dc.relation.ispartof Archives of Acoustics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Sound absorption es_ES
dc.subject Fibrous materials es_ES
dc.subject Porous material es_ES
dc.subject Material characterization es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title An Inverse Method to Obtain Porosity, Fibre Diameterand Density of Fibrous Sound Absorbing Materials es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.identifier.doi 10.2478/v10168-011-0040-x
dc.relation.projectID info:eu-repo/grantAgreement/MEC//BIA2007-68098-C02-01/ES/PREDICCION DEL AISLAMIENTO ACUSTICO EN LA EDIFICACION/ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MAEC//A%2F023748%2F09/ES/ESTUDIO SOBRE BARRERAS MEDIOAMBIENTALES CONTRA EL RUIDO EN BASE A MATERIALES RECICLADOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//BIA2007-68098-C02-02/ES/MODELADO DEL RUIDO TRANSMITIDO POR FLANCOS EN LA EDIFICACION/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica - Centre de Tecnologies Físiques: Acústica, Materials i Astrofísica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.description.bibliographicCitation Alba Fernández, J.; Rey Tormos, RMD.; Ramis Soriano, J.; Arenas, JP. (2011). An Inverse Method to Obtain Porosity, Fibre Diameterand Density of Fibrous Sound Absorbing Materials. Archives of Acoustics. 36(3):561-574. https://doi.org/10.2478/v10168-011-0040-x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.2478/v10168-011-0040-x es_ES
dc.description.upvformatpinicio 561 es_ES
dc.description.upvformatpfin 574 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 36 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 207615
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.contributor.funder Ministerio de Asuntos Exteriores y Cooperación es_ES
dc.description.references Allard, J., & Champoux, Y. (1992). New empirical equations for sound propagation in rigid frame fibrous materials. The Journal of the Acoustical Society of America, 91(6), 3346-3353. doi:10.1121/1.402824 es_ES
dc.description.references Attenborough, K. (1983). Acoustical characteristics of rigid fibrous absorbents and granular materials. The Journal of the Acoustical Society of America, 73(3), 785-799. doi:10.1121/1.389045 es_ES
dc.description.references Bies, D. A., & Hansen, C. H. (1980). Flow resistance information for acoustical design. Applied Acoustics, 13(5), 357-391. doi:10.1016/0003-682x(80)90002-x es_ES
dc.description.references Champoux, Y., Stinson, M. R., & Daigle, G. A. (1991). Air‐based system for the measurement of porosity. The Journal of the Acoustical Society of America, 89(2), 910-916. doi:10.1121/1.1894653 es_ES
dc.description.references Crocker, M. J., & Arenas, J. P. (s. f.). Use of Sound-Absorbing Materials. Handbook of Noise and Vibration Control, 696-713. doi:10.1002/9780470209707.ch57 es_ES
dc.description.references Delany, M. E., & Bazley, E. N. (1970). Acoustical properties of fibrous absorbent materials. Applied Acoustics, 3(2), 105-116. doi:10.1016/0003-682x(70)90031-9 es_ES
dc.description.references Dunn, I. P., & Davern, W. A. (1986). Calculation of acoustic impedance of multi-layer absorbers. Applied Acoustics, 19(5), 321-334. doi:10.1016/0003-682x(86)90044-7 es_ES
dc.description.references Fellah, Z. E. A., Berger, S., Lauriks, W., Depollier, C., Aristégui, C., & Chapelon, J.-Y. (2003). Measuring the porosity and the tortuosity of porous materials via reflected waves at oblique incidence. The Journal of the Acoustical Society of America, 113(5), 2424-2433. doi:10.1121/1.1567275 es_ES
dc.description.references Fellah, Z. E. A., Berger, S., Lauriks, W., Depollier, C., & Fellah, M. (2003). Measuring the porosity of porous materials having a rigid frame via reflected waves: A time domain analysis with fractional derivatives. Journal of Applied Physics, 93(1), 296-303. doi:10.1063/1.1524025 es_ES
dc.description.references Fellah, Z. E. A., Berger, S., Lauriks, W., Depollier, C., Trompette, P., & Chapelon, J. Y. (2003). Ultrasonic measurement of the porosity and tortuosity of air-saturated random packings of beads. Journal of Applied Physics, 93(11), 9352-9359. doi:10.1063/1.1572191 es_ES
dc.description.references Fellah, Z. E. A., Mitri, F. G., Fellah, M., Ogam, E., & Depollier, C. (2007). Ultrasonic characterization of porous absorbing materials: Inverse problem. Journal of Sound and Vibration, 302(4-5), 746-759. doi:10.1016/j.jsv.2006.12.007 es_ES
dc.description.references Garai, M., & Pompoli, F. (2005). A simple empirical model of polyester fibre materials for acoustical applications. Applied Acoustics, 66(12), 1383-1398. doi:10.1016/j.apacoust.2005.04.008 es_ES
dc.description.references ISO (1998), 10534-2:1998. Acoustics - determination of sound absorption coefficient and impedance in impedance tubes - Part 2: transfer-function method, International Organization for Standardization, Geneva. es_ES
dc.description.references Miki, Y. (1990). Acoustical properties of porous materials. Modifications of Delany-Bazley models. Journal of the Acoustical Society of Japan (E), 11(1), 19-24. doi:10.1250/ast.11.19 es_ES
dc.description.references Miki, Y. (1990). Acoustical properties of porous materials. Generalizations of empirical models. Journal of the Acoustical Society of Japan (E), 11(1), 25-28. doi:10.1250/ast.11.25 es_ES
dc.description.references Ramis, J., Alba, J., Del Rey, R., Escuder, E., & Sanchís, V. J. (2010). Nuevos materiales absorbentes acústicos basados en fibra de kenaf. Materiales de Construcción, 60(299), 133-143. doi:10.3989/mc.2010.50809 es_ES
dc.description.references Shoshani, Y., & Yakubov, Y. (2000). Numerical assessment of maximal absorption coefficients for nonwoven fiberwebs. Applied Acoustics, 59(1), 77-87. doi:10.1016/s0003-682x(99)00015-8 es_ES
dc.description.references Umnova, O., Attenborough, K., Shin, H.-C., & Cummings, A. (2005). Deduction of tortuosity and porosity from acoustic reflection and transmission measurements on thick samples of rigid-porous materials. Applied Acoustics, 66(6), 607-624. doi:10.1016/j.apacoust.2004.02.005 es_ES
dc.description.references Voronina, N. (1994). Acoustic properties of fibrous materials. Applied Acoustics, 42(2), 165-174. doi:10.1016/0003-682x(94)90005-1 es_ES
dc.description.references Voronina, N. (1996). Improved empirical model of sound propagation through a fibrous material. Applied Acoustics, 48(2), 121-132. doi:10.1016/0003-682x(95)00055-e es_ES
dc.description.references Voronina, N. (1998). An empirical model for elastic porous materials. Applied Acoustics, 55(1), 67-83. doi:10.1016/s0003-682x(97)00098-4 es_ES
dc.description.references Voronina, N. (1999). An empirical model for rigid-frame porous materials with low porosity. Applied Acoustics, 58(3), 295-304. doi:10.1016/s0003-682x(98)00076-0 es_ES
dc.description.references Voronina, N. ., & Horoshenkov, K. . (2003). A new empirical model for the acoustic properties of loose granular media. Applied Acoustics, 64(4), 415-432. doi:10.1016/s0003-682x(02)00105-6 es_ES
dc.description.references Wang, X., Eisenbrey, J., Zeitz, M., & Sun, J. Q. (2004). Multi-stage regression analysis of acoustical properties of polyurethane foams. Journal of Sound and Vibration, 273(4-5), 1109-1117. doi:10.1016/j.jsv.2003.09.039 es_ES
dc.description.references Wilson, D. K. (1997). Simple, relaxational models for the acoustical properties of porous media. Applied Acoustics, 50(3), 171-188. doi:10.1016/s0003-682x(96)00048-5 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem