- -

Scoring by nonlocal image patch estimator for early detection of Alzheimer's disease

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Scoring by nonlocal image patch estimator for early detection of Alzheimer's disease

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Coupé, Pierrick es_ES
dc.contributor.author Eskildsen, Simon F. es_ES
dc.contributor.author Manjón Herrera, José Vicente es_ES
dc.contributor.author Fonov, Vladirmir S. es_ES
dc.contributor.author Pruessner, Jens C. es_ES
dc.contributor.author Allard, Michèle es_ES
dc.contributor.author Collins, Louis D. es_ES
dc.date.accessioned 2014-03-05T11:07:16Z
dc.date.available 2014-03-05T11:07:16Z
dc.date.issued 2012
dc.identifier.uri http://hdl.handle.net/10251/36194
dc.description Data used in the preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu/ADNI). es_ES
dc.description.abstract Detection of Alzheimer's disease (AD) at the first stages of the pathology is an important task to accelerate the development of new therapies and improve treatment. Compared to AD detection, the prediction of AD using structural MRI at the mild cognitive impairment (MCI) or pre-MCI stage is more complex because the associated anatomical changes are more subtle. In this study, we analyzed the capability of a recently proposed method, SNIPE (Scoring by Nonlocal Image Patch Estimator), to predict AD by analyzing entorhinal cortex (EC) and hippocampus (HC) scoring over the entire ADNI database (834 scans). Detection (AD vs. CN) and prediction (progressive - pMCI vs. stable - sMCI) efficiency of SNIPE were studied using volumetric and grading biomarkers. First, our results indicate that grading-based biomarkers are more relevant for prediction than volume-based biomarkers. Second, we show that HC-based biomarkers are more important than EC-based biomarkers for prediction. Third, we demonstrate that the results obtained by SNIPE are similar to or better than results obtained in an independent study using HC volume, cortical thickness, and tensor-based morphometry, individually and in combination. Fourth, a comparison of new patch-based methods shows that the nonlocal redundancy strategy involved in SNIPE obtained similar results to a new local sparse-based approach. Finally, we present the first results of patch-based morphometry to illustrate the progression of the pathology. es_ES
dc.description.sponsorship We wish to thank Dr. Robin Wolz for providing the list of ADNI subjects used in his study, which allowed us to perform the presented method comparison. We also want to thank the Canadian Institutes of Health Research (MOP-111169) and the Fonds de la recherche en sante du Quebec. Data collection and sharing for this project were funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904). The ADNI is funded by the National Institute on Aging and the National Institute of Biomedical Imaging and Bioengineering and through generous contributions from the following: Abbott, AstraZeneca AB, Bayer Schering Pharma AG, Bristol-Myers Squibb, Eisai Global Clinical Development, Elan Corporation, Genentech, GE Healthcare, GlaxoSmithKline, Innogenetics NV, Johnson & Johnson, Eli Lilly and Co., Medpace, Inc., Merck and Co., Inc., Novartis AG, Pfizer Inc., F. Hoffmann-La Roche, Schering-Plough, Synarc Inc., as well as nonprofit partners, the Alzheimer's Association and Alzheimer's Drug Discovery Foundation, with participation from the U. S. Food and Drug Administration. Private sector contributions to the ADNI are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study was coordinated by the Alzheimer's Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of California, Los Angeles. This research was also supported by NIH grants P30AG010129, K01 AG030514 and the Dana Foundation and also by the Spanish grant TIN2011-26727 from the Ministerio de Ciencia e Innovacion. en_EN
dc.format.extent 12 es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof NeuroImage: Clinical es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Scoring es_ES
dc.subject Grading es_ES
dc.subject Hippocampus es_ES
dc.subject Entorhinal cortex es_ES
dc.subject Patient's classification es_ES
dc.subject Nonlocal means estimator es_ES
dc.subject Alzheimer's disease es_ES
dc.subject Early detection es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Scoring by nonlocal image patch estimator for early detection of Alzheimer's disease es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.nicl.2012.10.002 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CIHR//MOP-111169/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NIH/NATIONAL INSTITUTE ON AGING/3P30AG010129-11S1/US/ en_EN
dc.relation.projectID info:eu-repo/grantAgreement/NIH/NATIONAL INSTITUTE ON AGING/1U01AG024904-01/US/
dc.relation.projectID info:eu-repo/grantAgreement/NIH/NATIONAL INSTITUTE ON AGING/5K01AG030514-02/US/
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TIN2011-26727/ES/MEDIDA AUTOMATICA DE ESTRUCTURAS CEREBRALES CORTICALES A PARTIR DE IMAGENES DE RM/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Coupé, P.; Eskildsen, SF.; Manjón Herrera, JV.; Fonov, VS.; Pruessner, JC.; Allard, M.; Collins, LD. (2012). Scoring by nonlocal image patch estimator for early detection of Alzheimer's disease. NeuroImage: Clinical. 1(1):141-152. https://doi.org/10.1016/j.nicl.2012.10.002 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.nicl.2012.10.002 es_ES
dc.description.upvformatpinicio 141 es_ES
dc.description.upvformatpfin 152 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 1 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 237126
dc.identifier.eissn 2213-1582
dc.identifier.pmid 24179747 en_EN
dc.identifier.pmcid PMC3757726
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Canadian Institutes of Health Research es_ES
dc.contributor.funder Dana Foundation es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem