- -

Language technology for handwritten text recognition

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Language technology for handwritten text recognition

Mostrar el registro completo del ítem

Toselli, AH.; Serrano Martínez-Santos, N.; Giménez Pastor, A.; Khoury, I.; Juan Císcar, A.; Vidal Ruiz, E. (2012). Language technology for handwritten text recognition. En Advances in Speech and Language Technologies for Iberian Languages. Springer Verlag (Germany). 328:178-186. https://doi.org/10.1007/978-3-642-35292-8_19

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/36452

Ficheros en el ítem

Metadatos del ítem

Título: Language technology for handwritten text recognition
Autor: Toselli, Alejandro Héctor Serrano Martínez-Santos, Nicolás Giménez Pastor, Adrián Khoury, Ihab Juan Císcar, Alfonso Vidal Ruiz, Enrique
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto Tecnológico de Informática - Institut Universitari Mixt Tecnològic d'Informàtica
Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
This paper shows how the nowadays prevalent technology used in HTR borrows concepts and methods from the field of ASR; i.e. those based on Hidden Markov Models (HMMs). Additionally, it will be described a HTR approach based ...[+]
Palabras clave: Mixture of Gaussian Densities , Mixture of Bernoulli Distributions , Hidden Markov Model Emission Probability , On-Line Continuous Handwritten Text Recognition
Derechos de uso: Cerrado
ISBN: 978-3-642-35291-1
Fuente:
Advances in Speech and Language Technologies for Iberian Languages. (issn: 1865-0929 )
DOI: 10.1007/978-3-642-35292-8_19
Editorial:
Springer Verlag (Germany)
Versión del editor: http://link.springer.com/chapter/10.1007%2F978-3-642-35292-8_19
Título del congreso: IberSPEECH 2012 Conference
Lugar del congreso: Madrid
Fecha congreso: November 21-23, 2012
Serie: Communications in Computer and Information Science;328
Código del Proyecto:
info:eu-repo/grantAgreement/MEC//CSD2007-00018/ES/Multimodal Intraction in Pattern Recognition and Computer Visionm/
info:eu-repo/grantAgreement/MICINN//TIN2009-14633-C03-01/ES/Multimodal Interaction For Text Transcription With Adaptive Learning/
Agradecimientos:
Work supported by the EC (FEDER), the Spanish MEC under the MIPRCV “Consolider Ingenio 2010” research programme (CSD2007- 00018) and the Spanisg Government (MICINN and “Plan E”) under the MITTRAL (TIN2009-14633-C03-01) ...[+]
Tipo: Capítulo de libro

References

Likforman-Sulem, L., Zahour, A., Taconet, B.: Text line segmentation of historical documents: a survey. International Journal on Document Analysis and Recognition 9, 123–138 (2007)

Wong, K.Y., Wahl, F.M.: Document analysis system. IBM Journal of Research and Development 26, 647–656 (1982)

Jelinek, F.: Statistical methods for speech recognition. MIT Press (1998) [+]
Likforman-Sulem, L., Zahour, A., Taconet, B.: Text line segmentation of historical documents: a survey. International Journal on Document Analysis and Recognition 9, 123–138 (2007)

Wong, K.Y., Wahl, F.M.: Document analysis system. IBM Journal of Research and Development 26, 647–656 (1982)

Jelinek, F.: Statistical methods for speech recognition. MIT Press (1998)

Katz, S.M.: Estimation of probabilities from sparse data for the language model component of a speech recognizer. In: Proceedings of the IEEE Transactions on Acoustics, Speech and Signal Processing (ICASSP 1987), vol. ASSP-35, pp. 400–401(March 1987)

Kneser, R., Ney, H.: Improved backing-off for n-gram language modeling. In: Proceedings of the International Conference on Acoustics, Speech and Signal Processing (ICASSP), vol. 1, pp. 181–184 (1995)

Bazzi, I., Schwartz, R., Makhoul, J.: An omnifont open-vocabulary OCR system for English and Arabic. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(6), 495–504 (1999)

Toselli, A.H., Juan, A., Keysers, D., González, J., Salvador, I., Ney, H., Vidal, E., Casacuberta, F.: Integrated handwriting recognition and interpretation using finite-state models. International Journal of Pattern Recognition and Artificial Intelligence 18(4), 519–539 (2004)

Rabiner, L., Juang, B.H.: Fundamentals of speech recognition. Prentice-Hall, Englewood Cliffs (1993)

Giménez, A., Juan, A.: Embedded bernoulli mixture hmms for handwritten word recognition. In: Proceedings of the 10th International Conference on Document Analysis and Recognition, Barcelona, Spain, pp. 896–900. IEEE Computer Society (July 2009)

Toselli, A., Juan, A., Vidal, E.: Spontaneous handwriting recognition and classification. In: Proceedings of the International Conference on Pattern Recognition (ICPR 2004), Cambridge, United Kingdom, vol. 1, pp. 433–436 (August 2004)

Marti, U.V., Bunke, H.: The IAM-database: an English sentence database for off-line handwriting recognition. International Journal on Document Analysis and Recognition (IJDAR) 5(1), 39–46 (2002)

Romero, V., Toselli, A.H., Rodríguez, L., Vidal, E.: Computer Assisted Transcription for Ancient Text Images. In: Kamel, M.S., Campilho, A. (eds.) ICIAR 2007. LNCS, vol. 4633, pp. 1182–1193. Springer, Heidelberg (2007)

Pérez, D., Tarazón, L., Serrano, N., Castro, F.M., Ramos-Terrades, O., Juan, A.: The germana database. In: Proceedings of the 10th International Conference on Document Analysis and Recognition, Barcelona, Spain, pp. 301–305. IEEE Computer Society (July 2009)

Serrano, N., Juan, A.: The rodrigo database. In: Proceedings of the The Seventh International Conference on Language Resources and Evaluation (LREC 2010), Malta, May 19-21 (2010)

Pechwitz, M., Maddouri, S.S., Magn̈er, V., Ellouze, N., Amiri, H.: IFN/ENIT-database of handwritten Arabic words. In: Proc. of the Colloque International Francophone sur l’Ecrit et le Document (CIFED), Hammmamet, Tunisia (October 2002)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem