- -

Terahertz Radiation Shaping Based on Third-Order Dispersion and Self-Phase Modulation in Standard Single-Mode Optical Fiber

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Terahertz Radiation Shaping Based on Third-Order Dispersion and Self-Phase Modulation in Standard Single-Mode Optical Fiber

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Palací López, Jesús es_ES
dc.contributor.author Vidal Rodriguez, Borja es_ES
dc.date.accessioned 2014-03-14T16:39:56Z
dc.date.issued 2012-06
dc.identifier.issn 1866-6892
dc.identifier.uri http://hdl.handle.net/10251/36524
dc.description.abstract Third-order dispersion and self-phase modulation in standard single-mode fibers are employed in a fiber-based THz time domain spectroscopy system for radiation shaping. Ultra-short optical pulses are converted into trains of pulses, thus shaping the THz radiation emitted by photoconductive antennas operating at telecom wavelengths. The proposed architecture allows narrowband and wideband THz emission as well as tunability of the central frequency. Since the shaping takes place in standard optical fiber the architecture could be potentially implemented without requiring any additional device. Experiments showing the principle of operation have been performed demonstrating tunability of the central frequency between 350 and 800 GHz and bandwidth from 150 GHz to the full bandwidth of the system. es_ES
dc.description.sponsorship This work has been financially supported by the Spanish Ministerio de Ciencia e Innovacion TEC2009-08078. The work of J. Palaci was supported by the UPV-FPI program. en_EN
dc.format.extent 10 es_ES
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Journal of Infrared, Millimeter and Terahertz Waves es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Terahertz spectroscopy es_ES
dc.subject Photoconductive materials es_ES
dc.subject Nonlinear optics es_ES
dc.subject Optical signal processing es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Terahertz Radiation Shaping Based on Third-Order Dispersion and Self-Phase Modulation in Standard Single-Mode Optical Fiber es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1007/s10762-012-9896-8 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2009-08078/ES/Generacion Y Procesado Optico De Señales De Terahercios/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Palací López, J.; Vidal Rodriguez, B. (2012). Terahertz Radiation Shaping Based on Third-Order Dispersion and Self-Phase Modulation in Standard Single-Mode Optical Fiber. Journal of Infrared, Millimeter and Terahertz Waves. 33(6):605-614. https://doi.org/10.1007/s10762-012-9896-8 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s10762-012-9896-8 es_ES
dc.description.upvformatpinicio 605 es_ES
dc.description.upvformatpfin 614 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 33 es_ES
dc.description.issue 6 es_ES
dc.relation.senia 223371
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references P.H. Siegel, IEEE Trans. Microwave Theory Tech. 50, 910 (2002). es_ES
dc.description.references M. Tonouchi, Nature Photon. 1, 97 (2007). es_ES
dc.description.references J. Faist, F. Capasso, D.-L. Sivco, C. Sirtori, A.-L. Hutchinson, A.-Y- Cho, Science 264, 5158 (1994). es_ES
dc.description.references D. Saeedkia, S. Safavi-Naeini, J. Lightwave Technol. 26, 2409 (2008). es_ES
dc.description.references B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, M. Schell, Opt. Express 16, 9565 (2008). es_ES
dc.description.references A.S. Weling, T.F. Heinz, J. Opt. Soc. Am. B 16, 1455 (1999). es_ES
dc.description.references O. Levinson, M. Horowitz, J. Lightwave Technol. 21, 1179 (2003). es_ES
dc.description.references J. Stigwall, A. Wiberg, IEEE Photon. Technol. Lett. 19, 931 (2007). es_ES
dc.description.references S. Vidal, J. Degert, J. Oberlé, E. Freysz, J. Opt. Soc. B 27, 1044 (2010). es_ES
dc.description.references G. P. Agrawal, Nonlinear fiber optics, 3rd edn. (Academic Press, 2001), p.1 es_ES
dc.description.references G. P. Agrawal, Nonlinear fiber optics, 3rd edn. (Academic Press, 2001), pp.49 es_ES
dc.description.references G. P. Agrawal, Nonlinear fiber optics, 3rd edn. (Academic Press, 2001), p.97 es_ES
dc.description.references G. P. Agrawal, Nonlinear fiber optics, 3rd edn. (Academic Press, 2001), pp.51-55 es_ES
dc.description.references J. Capmany, B. Ortega, D. Pastor, J. Lightwave Technol. 24, 201 (2006). es_ES
dc.description.references E. Hellstrom, H. Sunnerud, M. Westlund, M. Karlsson, J. Lightwave Technol. 21, 1188 (2003). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem