Mostrar el registro sencillo del ítem
dc.contributor.author | Palací López, Jesús | es_ES |
dc.contributor.author | Vidal Rodriguez, Borja | es_ES |
dc.date.accessioned | 2014-03-14T16:39:56Z | |
dc.date.issued | 2012-06 | |
dc.identifier.issn | 1866-6892 | |
dc.identifier.uri | http://hdl.handle.net/10251/36524 | |
dc.description.abstract | Third-order dispersion and self-phase modulation in standard single-mode fibers are employed in a fiber-based THz time domain spectroscopy system for radiation shaping. Ultra-short optical pulses are converted into trains of pulses, thus shaping the THz radiation emitted by photoconductive antennas operating at telecom wavelengths. The proposed architecture allows narrowband and wideband THz emission as well as tunability of the central frequency. Since the shaping takes place in standard optical fiber the architecture could be potentially implemented without requiring any additional device. Experiments showing the principle of operation have been performed demonstrating tunability of the central frequency between 350 and 800 GHz and bandwidth from 150 GHz to the full bandwidth of the system. | es_ES |
dc.description.sponsorship | This work has been financially supported by the Spanish Ministerio de Ciencia e Innovacion TEC2009-08078. The work of J. Palaci was supported by the UPV-FPI program. | en_EN |
dc.format.extent | 10 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Journal of Infrared, Millimeter and Terahertz Waves | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Terahertz spectroscopy | es_ES |
dc.subject | Photoconductive materials | es_ES |
dc.subject | Nonlinear optics | es_ES |
dc.subject | Optical signal processing | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Terahertz Radiation Shaping Based on Third-Order Dispersion and Self-Phase Modulation in Standard Single-Mode Optical Fiber | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1007/s10762-012-9896-8 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2009-08078/ES/Generacion Y Procesado Optico De Señales De Terahercios/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Palací López, J.; Vidal Rodriguez, B. (2012). Terahertz Radiation Shaping Based on Third-Order Dispersion and Self-Phase Modulation in Standard Single-Mode Optical Fiber. Journal of Infrared, Millimeter and Terahertz Waves. 33(6):605-614. https://doi.org/10.1007/s10762-012-9896-8 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s10762-012-9896-8 | es_ES |
dc.description.upvformatpinicio | 605 | es_ES |
dc.description.upvformatpfin | 614 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 33 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.senia | 223371 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | P.H. Siegel, IEEE Trans. Microwave Theory Tech. 50, 910 (2002). | es_ES |
dc.description.references | M. Tonouchi, Nature Photon. 1, 97 (2007). | es_ES |
dc.description.references | J. Faist, F. Capasso, D.-L. Sivco, C. Sirtori, A.-L. Hutchinson, A.-Y- Cho, Science 264, 5158 (1994). | es_ES |
dc.description.references | D. Saeedkia, S. Safavi-Naeini, J. Lightwave Technol. 26, 2409 (2008). | es_ES |
dc.description.references | B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, M. Schell, Opt. Express 16, 9565 (2008). | es_ES |
dc.description.references | A.S. Weling, T.F. Heinz, J. Opt. Soc. Am. B 16, 1455 (1999). | es_ES |
dc.description.references | O. Levinson, M. Horowitz, J. Lightwave Technol. 21, 1179 (2003). | es_ES |
dc.description.references | J. Stigwall, A. Wiberg, IEEE Photon. Technol. Lett. 19, 931 (2007). | es_ES |
dc.description.references | S. Vidal, J. Degert, J. Oberlé, E. Freysz, J. Opt. Soc. B 27, 1044 (2010). | es_ES |
dc.description.references | G. P. Agrawal, Nonlinear fiber optics, 3rd edn. (Academic Press, 2001), p.1 | es_ES |
dc.description.references | G. P. Agrawal, Nonlinear fiber optics, 3rd edn. (Academic Press, 2001), pp.49 | es_ES |
dc.description.references | G. P. Agrawal, Nonlinear fiber optics, 3rd edn. (Academic Press, 2001), p.97 | es_ES |
dc.description.references | G. P. Agrawal, Nonlinear fiber optics, 3rd edn. (Academic Press, 2001), pp.51-55 | es_ES |
dc.description.references | J. Capmany, B. Ortega, D. Pastor, J. Lightwave Technol. 24, 201 (2006). | es_ES |
dc.description.references | E. Hellstrom, H. Sunnerud, M. Westlund, M. Karlsson, J. Lightwave Technol. 21, 1188 (2003). | es_ES |