- -

Comparing humans and AI agents

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Comparing humans and AI agents

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Insa Cabrera, Javier es_ES
dc.contributor.author Dowe, David L. es_ES
dc.contributor.author España Cubillo, Sergio es_ES
dc.contributor.author Henánez-Lloreda, M. Victoria es_ES
dc.contributor.author Hernández Orallo, José es_ES
dc.date.accessioned 2014-03-21T08:38:26Z
dc.date.issued 2011
dc.identifier.isbn 978-3-642-22886-5
dc.identifier.issn 0302-9743
dc.identifier.uri http://hdl.handle.net/10251/36548
dc.description.abstract Comparing humans and machines is one important source of information about both machine and human strengths and limitations. Most of these comparisons and competitions are performed in rather specific tasks such as calculus, speech recognition, translation, games, etc. The information conveyed by these experiments is limited, since it portrays that machines are much better than humans at some domains and worse at others. In fact, CAPTCHAs exploit this fact. However, there have only been a few proposals of general intelligence tests in the last two decades, and, to our knowledge, just a couple of implementations and evaluations. In this paper, we implement one of the most recent test proposals, devise an interface for humans and use it to compare the intelligence of humans and Q-learning, a popular reinforcement learning algorithm. The results are highly informative in many ways, raising many questions on the use of a (universal) distribution of environments, on the role of measuring knowledge acquisition, and other issues, such as speed, duration of the test, scalability, etc. es_ES
dc.description.sponsorship We thank the anonymous reviewers for their helpful comments. We also thank José Antonio Martín H. for helping us with several issues about the RL competition, RL-Glue and reinforcement learning in general. We are also grateful to all the subjects who took the test. We also thank the funding from the Spanish MEC and MICINN for projects TIN2009-06078- E/TIN, Consolider-Ingenio CSD2007-00022 and TIN2010-21062-C02, for MEC FPU grant AP2006-02323, and Generalitat Valenciana for Prometeo/2008/051
dc.format.extent 11 es_ES
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Artificial General Intelligence es_ES
dc.relation.ispartofseries Lecture Notes in Computer Science;vol. 6830
dc.rights Reserva de todos los derechos es_ES
dc.subject Intelligence measurement es_ES
dc.subject Universal intelligence es_ES
dc.subject General vs specific intelligence es_ES
dc.subject Reinforcement learning es_ES
dc.subject IQ tests es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Comparing humans and AI agents es_ES
dc.type Capítulo de libro es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1007/978-3-642-22887-2_13
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TIN2009-06078-E/ES/ANYTIME UNIVERSAL INTELLIGENCE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CSD2007-00022/ES/Agreement Technologies/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//AP2006-0232/ES/AP2006-0232/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO08%2F2008%2F051/ES/Advances on Agreement Technologies for Computational Entities (atforce)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TIN2010-21062-C02-02/ES/SWEETLOGICS-UPV/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Insa Cabrera, J.; Dowe, DL.; España Cubillo, S.; Henánez-Lloreda, MV.; Hernández Orallo, J. (2011). Comparing humans and AI agents. En Artificial General Intelligence. Springer Verlag (Germany). 6830:122-132. https://doi.org/10.1007/978-3-642-22887-2_13 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 4th International Conference, AGI 2011 es_ES
dc.relation.conferencedate August 3-6, 2011 es_ES
dc.relation.conferenceplace Mountain View, CA, USA es_ES
dc.description.upvformatpinicio 122 es_ES
dc.description.upvformatpfin 132 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6830 es_ES
dc.relation.senia 201457
dc.contributor.funder Ministerio de Educación
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.contributor.funder Generalitat Valenciana
dc.description.references Dowe, D.L., Hajek, A.R.: A non-behavioural, computational extension to the Turing Test. In: Intl. Conf. on Computational Intelligence & multimedia applications (ICCIMA 1998), Gippsland, Australia, pp. 101–106 (1998) es_ES
dc.description.references Gordon, D., Subramanian, D.: A cognitive model of learning to navigate. In: Proc. 19th Conf. of the Cognitive Science Society, 1997, vol. 25, p. 271. Lawrence Erlbaum, Mahwah (1997) es_ES
dc.description.references Hernández-Orallo, J.: Beyond the Turing Test. J. Logic, Language & Information 9(4), 447–466 (2000) es_ES
dc.description.references Hernández-Orallo, J.: A (hopefully) non-biased universal environment class for measuring intelligence of biological and artificial systems. In: Hutter, M., et al. (eds.) 3rd Intl. Conf. on Artificial General Intelligence, pp. 182–183. Atlantis Press, London (2010) Extended report at, http://users.dsic.upv.es/proy/anynt/unbiased.pdf es_ES
dc.description.references Hernández-Orallo, J., Dowe, D.L.: Measuring universal intelligence: Towards an anytime intelligence test. Artificial Intelligence 174(18), 1508–1539 (2010) es_ES
dc.description.references Hernández-Orallo, J., Dowe, D.L., España-Cubillo, S., Hernández-Lloreda, M.V., Insa-Cabrera, J.: On more realistic environment distributions for defining, evaluating and developing intelligence. In: Schmidhuber, J., Thórisson, K.R., Looks, M. (eds.) AGI 2011. LNCS(LNAI), pp. 81–90. Springer, Heidelberg (2011) es_ES
dc.description.references Legg, S., Hutter, M.: A universal measure of intelligence for artificial agents. In: Intl Joint Conf on Artificial Intelligence, IJCAI, vol. 19, p. 1509 (2005) es_ES
dc.description.references Legg, S., Hutter, M.: Universal intelligence: A definition of machine intelligence. Minds and Machines 17(4), 391–444 (2007) es_ES
dc.description.references Li, M., Vitányi, P.: An introduction to Kolmogorov complexity and its applications, 3rd edn. Springer-Verlag New York, Inc., Heidelberg (2008) es_ES
dc.description.references Oppy, G., Dowe, D.L.: The Turing Test. In: Zalta, E.N. (ed.) Stanford Encyclopedia of Philosophy, Stanford University, Stanford (2011), http://plato.stanford.edu/entries/turing-test/ es_ES
dc.description.references Sanghi, P., Dowe, D.L.: A computer program capable of passing IQ tests. In: 4th Intl. Conf. on Cognitive Science (ICCS 2003), Sydney, pp. 570–575 (2003) es_ES
dc.description.references Solomonoff, R.J.: A formal theory of inductive inference. Part I. Information and control 7(1), 1–22 (1964) es_ES
dc.description.references Strehl, A.L., Li, L., Wiewiora, E., Langford, J., Littman, M.L.: PAC model-free reinforcement learning. In: ICML 2006, pp. 881–888. New York (2006) es_ES
dc.description.references Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. The MIT press, Cambridge (1998) es_ES
dc.description.references Turing, A.M.: Computing machinery and intelligence. Mind 59, 433–460 (1950) es_ES
dc.description.references Veness, J., Ng, K.S., Hutter, M., Silver, D.: A Monte Carlo AIXI Approximation. Journal of Artificial Intelligence Research, JAIR 40, 95–142 (2011) es_ES
dc.description.references von Ahn, L., Blum, M., Langford, J.: Telling humans and computers apart automatically. Communications of the ACM 47(2), 56–60 (2004) es_ES
dc.description.references Watkins, C.J.C.H., Dayan, P.: Q-learning. Mach. learning 8(3), 279–292 (1992) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem