- -

Critical points of higher order for the normal map of immersions in R^d

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Critical points of higher order for the normal map of immersions in R^d

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Monera, M.G. es_ES
dc.contributor.author Montesinos-Amilibia, A. es_ES
dc.contributor.author Moraes, S.M. es_ES
dc.contributor.author Sanabria Codesal, Esther es_ES
dc.date.accessioned 2014-03-21T11:47:39Z
dc.date.issued 2012-02-01
dc.identifier.issn 0166-8641
dc.identifier.uri http://hdl.handle.net/10251/36565
dc.description.abstract We study the critical points of the normal map v : NM -> Rk+n, where M is an immersed k-dimensional submanifold of Rk+n, NM is the normal bundle of M and v(m, u) = m + u if u is an element of NmM. Usually, the image of these critical points is called the focal set. However, in that set there is a subset where the focusing is highest, as happens in the case of curves in R-3 with the curve of the centers of spheres with contact of third order with the curve. We give a definition of r-critical points of a smooth map between manifolds, and apply it to study the 2 and 3-critical points of the normal map in general and the 2-critical points for the case k = n = 2 in detail. In the later case we analyze the relation with the strong principal directions of Montaldi (1986) [2]. (C) 2011 Elsevier B.V. All rights reserved. es_ES
dc.description.sponsorship Work partially supported by CAPES (BEX 4533/06-2). en_EN
dc.format.extent 8 es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Topology and its Applications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Critical points es_ES
dc.subject Ellipse of curvature es_ES
dc.subject Focal set es_ES
dc.subject Normal map es_ES
dc.subject Strong principal directions es_ES
dc.subject Veronese of curvature es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Critical points of higher order for the normal map of immersions in R^d es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1016/j.topol.2011.09.029
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2009-08933/ES/Singularidades, Geometria Generica Y Morfologia Matematica/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAPES//BEX 4533%2F06-2/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada es_ES
dc.description.bibliographicCitation Monera, M.; Montesinos-Amilibia, A.; Moraes, S.; Sanabria Codesal, E. (2012). Critical points of higher order for the normal map of immersions in R^d. Topology and its Applications. 159:537-544. https://doi.org/10.1016/j.topol.2011.09.029 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.topol.2011.09.029 es_ES
dc.description.upvformatpinicio 537 es_ES
dc.description.upvformatpfin 544 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 159 es_ES
dc.relation.senia 211784
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Coordenaçao de Aperfeiçoamento de Pessoal de Nível Superior, Brasil es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem