Mostrar el registro sencillo del ítem
dc.contributor.author | Monera, M.G. | es_ES |
dc.contributor.author | Montesinos-Amilibia, A. | es_ES |
dc.contributor.author | Moraes, S.M. | es_ES |
dc.contributor.author | Sanabria Codesal, Esther | es_ES |
dc.date.accessioned | 2014-03-21T11:47:39Z | |
dc.date.issued | 2012-02-01 | |
dc.identifier.issn | 0166-8641 | |
dc.identifier.uri | http://hdl.handle.net/10251/36565 | |
dc.description.abstract | We study the critical points of the normal map v : NM -> Rk+n, where M is an immersed k-dimensional submanifold of Rk+n, NM is the normal bundle of M and v(m, u) = m + u if u is an element of NmM. Usually, the image of these critical points is called the focal set. However, in that set there is a subset where the focusing is highest, as happens in the case of curves in R-3 with the curve of the centers of spheres with contact of third order with the curve. We give a definition of r-critical points of a smooth map between manifolds, and apply it to study the 2 and 3-critical points of the normal map in general and the 2-critical points for the case k = n = 2 in detail. In the later case we analyze the relation with the strong principal directions of Montaldi (1986) [2]. (C) 2011 Elsevier B.V. All rights reserved. | es_ES |
dc.description.sponsorship | Work partially supported by CAPES (BEX 4533/06-2). | en_EN |
dc.format.extent | 8 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Topology and its Applications | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Critical points | es_ES |
dc.subject | Ellipse of curvature | es_ES |
dc.subject | Focal set | es_ES |
dc.subject | Normal map | es_ES |
dc.subject | Strong principal directions | es_ES |
dc.subject | Veronese of curvature | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Critical points of higher order for the normal map of immersions in R^d | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1016/j.topol.2011.09.029 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2009-08933/ES/Singularidades, Geometria Generica Y Morfologia Matematica/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CAPES//BEX 4533%2F06-2/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada | es_ES |
dc.description.bibliographicCitation | Monera, M.; Montesinos-Amilibia, A.; Moraes, S.; Sanabria Codesal, E. (2012). Critical points of higher order for the normal map of immersions in R^d. Topology and its Applications. 159:537-544. https://doi.org/10.1016/j.topol.2011.09.029 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1016/j.topol.2011.09.029 | es_ES |
dc.description.upvformatpinicio | 537 | es_ES |
dc.description.upvformatpfin | 544 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 159 | es_ES |
dc.relation.senia | 211784 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Coordenaçao de Aperfeiçoamento de Pessoal de Nível Superior, Brasil | es_ES |