- -

GREAT: open source software for statistical machine translation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

GREAT: open source software for statistical machine translation

Mostrar el registro completo del ítem

González Mollá, J.; Casacuberta Nolla, F. (2011). GREAT: open source software for statistical machine translation. Machine Translation. 25(2):145-160. https://doi.org/10.1007/s10590-011-9097-6

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/36594

Ficheros en el ítem

Metadatos del ítem

Título: GREAT: open source software for statistical machine translation
Autor: González Mollá, Jorge Casacuberta Nolla, Francisco
Entidad UPV: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
[EN] In this article, the first public release of GREAT as an open-source, statistical machine translation (SMT) software toolkit is described. GREAT is based on a bilingual language modelling approach for SMT, which is ...[+]
Palabras clave: Grammatical inference , Language modelling , Monotonic bilingual segmentation , Statistical machine translation , Stochastic finite-state transducers
Derechos de uso: Reserva de todos los derechos
Fuente:
Machine Translation. (issn: 0922-6567 )
DOI: 10.1007/s10590-011-9097-6
Editorial:
Springer Netherlands
Versión del editor: http://link.springer.com/article/10.1007%2Fs10590-011-9097-6
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//TIN2009-14511/ES/Traduccion De Textos Y Transcripcion De Voz Interactivas/
info:eu-repo/grantAgreement/MITURCO//TSI-020110-2009-0439/ES/ERUDITO.COM/
info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO09%2F2009%2F014/ES/Adaptive learning and multimodality in pattern recognition (Almapater)/
Descripción: The final publication is available at Springer via http://dx.doi.org/10.1007/s10590-011-9097-6
Agradecimientos:
Study was supported by the EC (FEDER, FSE), the Spanish government (MICINN, MITyC, “Plan E”, under Grants MIPRCV “Consolider Ingenio 2010”, iTrans2 TIN2009-14511, and erudito.com TSI-020110-2009-439), and the Generalitat ...[+]
Tipo: Artículo

References

Amengual JC, Benedí JM, Casacuberta F, Castaño MA, Castellanos A, Jiménez VM, Llorens D, Marzal A, Pastor M, Prat F, Vidal E, Vilar JM (2000) The EUTRANS-I speech translation system. Mach Transl 15(1-2): 75–103

Andrés-Ferrer J, Juan-Císcar A, Casacuberta F (2008) Statistical estimation of rational transducers applied to machine translation. Appl Artif Intell 22(1–2): 4–22

Bangalore S, Riccardi G (2002) Stochastic finite-state models for spoken language machine translation. Mach Transl 17(3): 165–184 [+]
Amengual JC, Benedí JM, Casacuberta F, Castaño MA, Castellanos A, Jiménez VM, Llorens D, Marzal A, Pastor M, Prat F, Vidal E, Vilar JM (2000) The EUTRANS-I speech translation system. Mach Transl 15(1-2): 75–103

Andrés-Ferrer J, Juan-Císcar A, Casacuberta F (2008) Statistical estimation of rational transducers applied to machine translation. Appl Artif Intell 22(1–2): 4–22

Bangalore S, Riccardi G (2002) Stochastic finite-state models for spoken language machine translation. Mach Transl 17(3): 165–184

Berstel J (1979) Transductions and context-free languages. B.G. Teubner, Stuttgart, Germany

Casacuberta F, Vidal E (2004) Machine translation with inferred stochastic finite-state transducers. Comput Linguist 30(2): 205–225

Casacuberta F, Vidal E (2007) Learning finite-state models for machine translation. Mach Learn 66(1): 69–91

Foster G, Kuhn R, Johnson H (2006) Phrasetable smoothing for statistical machine translation. In: Proceedings of the 11th Conference on Empirical Methods in Natural Language Processing, Stroudsburg, PA, pp 53–61

González J (2009) Aprendizaje de transductores estocásticos de estados finitos y su aplicación en traducción automática. PhD thesis, Universitat Politècnica de València. Advisor: Casacuberta F

González J, Casacuberta F (2009) GREAT: a finite-state machine translation toolkit implementing a grammatical inference approach for transducer inference (GIATI). In: Proceedings of the EACL Workshop on Computational Linguistic Aspects of Grammatical Inference, Athens, Greece, pp 24–32

Kanthak S, Vilar D, Matusov E, Zens R, Ney H (2005) Novel reordering approaches in phrase-based statistical machine translation. In: Proceedings of the ACL Workshop on Building and Using Parallel Texts: Data-Driven Machine Translation and Beyond, Ann Arbor, MI, pp 167–174

Karttunen L (2001) Applications of finite-state transducers in natural language processing. In: Proceedings of the 5th Conference on Implementation and Application of Automata, London, UK, pp 34–46

Kneser R, Ney H (1995) Improved backing-off for n-gram language modeling. In: Proceedings of the 20th IEEE International Conference on Acoustic, Speech and Signal Processing, Detroit, MI, pp 181–184

Knight K, Al-Onaizan Y (1998) Translation with finite-state devices. In: Proceedings of the 3rd Conference of the Association for Machine Translation in the Americas, Langhorne, PA, pp 421–437

Koehn P (2004) Statistical significance tests for machine translation evaluation. In: Proceedings of the 9th Conference on Empirical Methods in Natural Language Processing, Barcelona, Spain, pp 388–395

Koehn P (2005) Europarl: a parallel corpus for statistical machine translation. In: Proceedings of the 10th Machine Translation Summit, Phuket, Thailand, pp 79–86

Koehn P (2010) Statistical machine translation. Cambridge University Press, Cambridge, UK

Koehn P, Hoang H (2007) Factored translation models. In: Proceedings of the Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, Prague, Czech Republic, pp 868–876

Koehn P, Hoang H, Birch A, Callison-Burch C, Federico M, Bertoldi N, Cowan B, Shen W, Moran C, Zens R, Dyer C, Bojar O, Constantin A, Herbst E (2007) Moses: open source toolkit for statistical machine translation. In: Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics, Prague, Czech Republic, pp 177–180

Kumar S, Deng Y, Byrne W (2006) A weighted finite state transducer translation template model for statistical machine translation. Nat Lang Eng 12(1): 35–75

Li Z, Callison-Burch C, Dyer C, Ganitkevitch J, Khudanpur S, Schwartz L, Thornton WNG, Weese J, Zaidan OF (2009) Joshua: an open source toolkit for parsing-based machine translation. In: Procee- dings of the ACL Workshop on Statistical Machine Translation, Morristown, NJ, pp 135–139

Llorens D, Vilar JM, Casacuberta F (2002) Finite state language models smoothed using n-grams. Int J Pattern Recognit Artif Intell 16(3): 275–289

Marcu D, Wong W (2002) A phrase-based, joint probability model for statistical machine translation. In: Proceedings of the 7th Conference on Empirical Methods in Natural Language Processing, Morristown, NJ, pp 133–139

Mariño JB, Banchs RE, Crego JM, de Gispert A, Lambert P, Fonollosa JAR, Costa-jussà MR (2006) N-gram-based machine translation. Comput Linguist 32(4): 527–549

Medvedev YT (1964) On the class of events representable in a finite automaton. In: Moore EF (eds) Sequential machines selected papers. Addison Wesley, Reading, MA

Mohri M, Pereira F, Riley M (2002) Weighted finite-state transducers in speech recognition. Comput Speech Lang 16(1): 69–88

Och FJ, Ney H (2002) Discriminative training and maximum entropy models for statistical machine translation. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, Philadelphia, PA, pp 295–302

Och FJ, Ney H (2003) A systematic comparison of various statistical alignment models. Comput Linguist 29(1): 19–51

Ortiz D, García-Varea I, Casacuberta F (2005) Thot: a toolkit to train phrase-based statistical translation models. In: Proceedings of the 10th Machine Translation Summit, Phuket, Thailand, pp 141–148

Papineni K, Roukos S, Ward T, Zhu WJ (2002) Bleu: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, Philadelphia, PA, pp 311–318

Pérez A, Torres MI, Casacuberta F (2008) Joining linguistic and statistical methods for Spanish-to-Basque speech translation. Speech Commun 50: 1021–1033

Picó D, Casacuberta F (2001) Some statistical-estimation methods for stochastic finite-state transducers. Mach Learn 44: 121–142

Rosenfeld R (1996) A maximum entropy approach to adaptive statistical language modeling. Comput Speech Lang 10: 187–228

Simard M, Plamondon P (1998) Bilingual sentence alignment: balancing robustness and accuracy. Mach Transl 13(1): 59–80

Singh AK, Husain S (2007) Exploring translation similarities for building a better sentence aligner. In: Proceedings of the 3rd Indian International Conference on Artificial Intelligence, Pune, India, pp 1852–1863

Steinbiss V, Tran BH, Ney H (1994) Improvements in beam search. In: Proceedings of the 3rd International Conference on Spoken Language Processing, Yokohama, Japan, pp 2143–2146

Torres MI, Varona A (2001) k-TSS language models in speech recognition systems. Comput Speech Lang 15(2): 127–149

Vidal E (1997) Finite-state speech-to-speech translation. In: Proceedings of the 22nd IEEE International Conference on Acoustic, Speech and Signal Processing, Munich, Germany, pp 111–114

Vidal E, Thollard F, de la Higuera C, Casacuberta F, Carrasco RC (2005) Probabilistic finite-state machines–Part II. IEEE Trans Pattern Anal Mach Intell 27(7): 1025–1039

Viterbi A (1967) Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans Inf Theory 13(2): 260–269

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem