Joubert, J. C., & Chenavas, J. (1979). New compounds from high pressure. Journal of Solid State Chemistry, 27(1), 29-39. doi:10.1016/0022-4596(79)90142-7
McMillan, P. F. (2002). New materials from high-pressure experiments. Nature Materials, 1(1), 19-25. doi:10.1038/nmat716
Huppertz, H. (2011). New synthetic discoveries via high-pressure solid-state chemistry. Chem. Commun., 47(1), 131-140. doi:10.1039/c0cc02715d
[+]
Joubert, J. C., & Chenavas, J. (1979). New compounds from high pressure. Journal of Solid State Chemistry, 27(1), 29-39. doi:10.1016/0022-4596(79)90142-7
McMillan, P. F. (2002). New materials from high-pressure experiments. Nature Materials, 1(1), 19-25. doi:10.1038/nmat716
Huppertz, H. (2011). New synthetic discoveries via high-pressure solid-state chemistry. Chem. Commun., 47(1), 131-140. doi:10.1039/c0cc02715d
Manjón, F. J., & Errandonea, D. (2009). Pressure-induced structural phase transitions in materials and earth sciences. physica status solidi (b), 246(1), 9-31. doi:10.1002/pssb.200844238
McMillan, P. F. (2005). Pressing on: The legacy of Percy W. Bridgman. Nature Materials, 4(10), 715-718. doi:10.1038/nmat1488
Davis, M. E. (2002). Ordered porous materials for emerging applications. Nature, 417(6891), 813-821. doi:10.1038/nature00785
Jiang, J., Yu, J., & Corma, A. (2010). Zeolithe mit sehr großen Poren als Bindeglied zwischen mikro- und mesoporösen Strukturen. Angewandte Chemie, 122(18), 3186-3212. doi:10.1002/ange.200904016
Jiang, J., Yu, J., & Corma, A. (2010). Extra-Large-Pore Zeolites: Bridging the Gap between Micro and Mesoporous Structures. Angewandte Chemie International Edition, 49(18), 3120-3145. doi:10.1002/anie.200904016
Hazen, R. M., & Finger, L. W. (1979). Polyhedral tilting: A common type of pure displacive phase transition and its relationship to analcite at high pressure. Phase Transitions, 1(1), 1-22. doi:10.1080/01411597908213181
Gatta, G. D. (2010). Extreme deformation mechanisms in open-framework silicates at high-pressure: Evidence of anomalous inter-tetrahedral angles. Microporous and Mesoporous Materials, 128(1-3), 78-84. doi:10.1016/j.micromeso.2009.08.006
Gatta, G. (2003). New insights on high-pressure behaviour of microporous materials from X-ray single-crystal data. Microporous and Mesoporous Materials, 61(1-3), 105-115. doi:10.1016/s1387-1811(03)00359-7
Greaves, G. N., Meneau, F., Sapelkin, A., Colyer, L. M., ap Gwynn, I., Wade, S., & Sankar, G. (2003). The rheology of collapsing zeolites amorphized by temperature and pressure. Nature Materials, 2(9), 622-629. doi:10.1038/nmat963
Greaves, G. N., Meneau, F., Kargl, F., Ward, D., Holliman, P., & Albergamo, F. (2007). Zeolite collapse and polyamorphism. Journal of Physics: Condensed Matter, 19(41), 415102. doi:10.1088/0953-8984/19/41/415102
Readman, J. E., Forster, P. M., Chapman, K. W., Chupas, P. J., Parise, J. B., & Hriljac, J. A. (2009). Pair distribution function analysis of pressure treated zeolite Na-A. Chemical Communications, (23), 3383. doi:10.1039/b902874a
Huang, Y., & Havenga, E. A. (2001). Why do zeolites with LTA structure undergo reversible amorphization under pressure? Chemical Physics Letters, 345(1-2), 65-71. doi:10.1016/s0009-2614(01)00856-9
Arletti, R., Ferro, O., Quartieri, S., Sani, A., Tabacchi, G., & Vezzalini, G. (2003). Structural deformation mechanisms of zeolites under pressure. American Mineralogist, 88(10), 1416-1422. doi:10.2138/am-2003-1004
Haines, J., Levelut, C., Isambert, A., Hébert, P., Kohara, S., Keen, D. A., … Andrault, D. (2009). Topologically Ordered Amorphous Silica Obtained from the Collapsed Siliceous Zeolite, Silicalite-1-F: A Step toward «Perfect» Glasses. Journal of the American Chemical Society, 131(34), 12333-12338. doi:10.1021/ja904054v
Lee, Y., Vogt, T., Hriljac, J. A., Parise, J. B., Hanson, J. C., & Kim, S. J. (2002). Non-framework cation migration and irreversible pressure-induced hydration in a zeolite. Nature, 420(6915), 485-489. doi:10.1038/nature01265
Lee, Y., Kao, C.-C., & Vogt, T. (2012). Thermal Expansion of the Superhydrated Small-Pore Zeolite Natrolite. The Journal of Physical Chemistry C, 116(5), 3286-3291. doi:10.1021/jp209514q
Rutter, M. D., Uchida, T., Secco, R. A., Huang, Y., & Wang, Y. (2001). Investigation of pressure-induced amorphization in hydrated zeolite Li-A and Na-A using synchrotron X-ray diffraction. Journal of Physics and Chemistry of Solids, 62(3), 599-606. doi:10.1016/s0022-3697(00)00222-5
Greaves, G. N. (2005). Identifying Vibrations That Destabilize Crystals and Characterize the Glassy State. Science, 308(5726), 1299-1302. doi:10.1126/science.1109411
HAZEN, R. M. (1983). Zeolite Molecular Sieve 4A: Anomalous Compressibility and Volume Discontinuities at High Pressure. Science, 219(4588), 1065-1067. doi:10.1126/science.219.4588.1065
Peral, I., & Íñiguez, J. (2006). Amorphization Induced by Pressure: Results for Zeolites and General Implications. Physical Review Letters, 97(22). doi:10.1103/physrevlett.97.225502
Corma, A., Rey, F., Rius, J., Sabater, M. J., & Valencia, S. (2004). Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites. Nature, 431(7006), 287-290. doi:10.1038/nature02909
a c [21] P bm P b2 P mbm [22] P mbm [23] [24] R exp R wp R F R B
Werner, P. E., Eriksson, L., & Westdahl, M. (1985). TREOR, a semi-exhaustive trial-and-error powder indexing program for all symmetries. Journal of Applied Crystallography, 18(5), 367-370. doi:10.1107/s0021889885010512
Grosse-Kunstleve, R. W., McCusker, L. B., & Baerlocher, C. (1999). Zeolite structure determination from powder diffraction data: applications of theFOCUSmethod. Journal of Applied Crystallography, 32(3), 536-542. doi:10.1107/s0021889899003453
McCusker, L. B., Liebau, F., & Engelhardt, G. (2001). Nomenclature of structural and compositional characteristics of ordered microporous and mesoporous materials with inorganic hosts(IUPAC Recommendations 2001). Pure and Applied Chemistry, 73(2), 381-394. doi:10.1351/pac200173020381
http://www.iza-structure.org/databases/ 2013
Rege, S. U., & Yang, R. T. (2002). Propane/propylene separation by pressure swing adsorption: sorbent comparison and multiplicity of cyclic steady states. Chemical Engineering Science, 57(7), 1139-1149. doi:10.1016/s0009-2509(01)00440-7
L. S. Cheng S. T. Wilson 2001
Yang, R. T., & Kikkinides, E. S. (1995). New sorbents for olefin/paraffin separations by adsorption viaπ -complexation. AIChE Journal, 41(3), 509-517. doi:10.1002/aic.690410309
Hedin, N., DeMartin, G. J., Strohmaier, K. G., & Reyes, S. C. (2007). PFG NMR self-diffusion of propylene in ITQ-29, CaA and NaCaA: Window size and cation effects. Microporous and Mesoporous Materials, 98(1-3), 182-188. doi:10.1016/j.micromeso.2006.08.017
Eldridge, R. B. (1993). Olefin/paraffin separation technology: a review. Industrial & Engineering Chemistry Research, 32(10), 2208-2212. doi:10.1021/ie00022a002
Grande, C. A., Gascon, J., Kapteijn, F., & Rodrigues, A. E. (2010). Propane/propylene separation with Li-exchanged zeolite 13X. Chemical Engineering Journal, 160(1), 207-214. doi:10.1016/j.cej.2010.03.044
[-]