- -

Synthesis of a Novel Zeolite through a Pressure-Induced Reconstructive Phase Transition Process

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Synthesis of a Novel Zeolite through a Pressure-Induced Reconstructive Phase Transition Process

Mostrar el registro completo del ítem

Jorda Moret, JL.; Rey Garcia, F.; Sastre Navarro, GI.; Valencia Valencia, S.; Palomino Roca, M.; Corma Canós, A.; Segura Garcia Del Rio, A.... (2013). Synthesis of a Novel Zeolite through a Pressure-Induced Reconstructive Phase Transition Process. Angewandte Chemie International Edition. 52(40):10458-10462. https://doi.org/10.1002/anie.201305230

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/36635

Ficheros en el ítem

Metadatos del ítem

Título: Synthesis of a Novel Zeolite through a Pressure-Induced Reconstructive Phase Transition Process
Autor: Jorda Moret, Jose Luis Rey Garcia, Fernando Sastre Navarro, German Ignacio Valencia Valencia, Susana Palomino Roca, Miguel Corma Canós, Avelino Segura Garcia del Rio, Alfredo Errandonea, Daniel Lacomba Perales, Raúl Manjón Herrera, Francisco Javier Gomis Hilario, Oscar Kleppe, Annette K. Jephcoat, Andrew P. Amboage, Mónica Rodríguez-Velamazán, J. Alberto
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
The first pressure-induced solid-phase synthesis of a zeolite has been found through compression of a common zeolite, ITQ-29 (see scheme, Si yellow, O red). The new microporous structure, ITQ-50, has a unique structure and ...[+]
Palabras clave: Adsorption , High-pressure chemistry , Phase transitions , X-ray diffraction , Zeolites
Derechos de uso: Cerrado
Fuente:
Angewandte Chemie International Edition. (issn: 1433-7851 )
DOI: 10.1002/anie.201305230
Editorial:
Wiley-VCH Verlag
Versión del editor: http://dx.doi.org/10.1002/anie.201305230
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MAT2012-38567-C02-01/ES/MATERIALES ZEOLITICOS COMO ESTRUCTURAS ANFITRIONAS DE NANOPARTICULAS. SINTESIS Y APLICACIONES NANOTECNOLOGICAS, CATALITICAS Y MEDIOAMBIENTALES/
...[+]
info:eu-repo/grantAgreement/MINECO//MAT2012-38567-C02-01/ES/MATERIALES ZEOLITICOS COMO ESTRUCTURAS ANFITRIONAS DE NANOPARTICULAS. SINTESIS Y APLICACIONES NANOTECNOLOGICAS, CATALITICAS Y MEDIOAMBIENTALES/
info:eu-repo/grantAgreement/MICINN//MAT2010-21270-C04-04/ES/CRECIMIENTO Y CARACTERIZACION DE NANOESTRUCTURAS DE OXIDOS METALICOS BAJO ALTAS PRESIONES/
info:eu-repo/grantAgreement/MICINN//MAT2010-21270-C04-01/ES/SINTESIS Y CARACTERIZACION OPTICA, ELECTRONICA, ESTRUCTURAL Y VIBRACIONAL DE NUEVOS MATERIALES BAJO CONDICIONES EXTREMAS DE PRESION Y TEMPERATURA/
info:eu-repo/grantAgreement/MICINN//CTQ2010-17988/ES/CATALIZADORES AVANZADOS PARA LA CONVERSION DE GAS DE SINTESIS EN COMBUSTIBLES/
info:eu-repo/grantAgreement/MEC//-2007-0004/ES/-2007-0004/
info:eu-repo/grantAgreement/MICINN//CSD2009-00050/ES/Desarrollo de catalizadores más eficientes para el diseño de procesos químicos sostenibles y produccion limpia de energia/
info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/
info:eu-repo/grantAgreement/GVA//ACOMP%2F2013%2F012/
info:eu-repo/grantAgreement/UPV//PAID-05-2009/
info:eu-repo/grantAgreement/UPV//UPV2010-0096/
[-]
Agradecimientos:
We thank the Diamond Light Source (beamline I15) and Institute Laue-Langevin (beamline D1B) for beamtime allocation, and the Spanish Government (projects MAT2010-21270-C04-01/04, MAT2012-3856-C02-01, CTQ2010-17988/PPQ, ...[+]
Tipo: Artículo

References

Joubert, J. C., & Chenavas, J. (1979). New compounds from high pressure. Journal of Solid State Chemistry, 27(1), 29-39. doi:10.1016/0022-4596(79)90142-7

McMillan, P. F. (2002). New materials from high-pressure experiments. Nature Materials, 1(1), 19-25. doi:10.1038/nmat716

Huppertz, H. (2011). New synthetic discoveries via high-pressure solid-state chemistry. Chem. Commun., 47(1), 131-140. doi:10.1039/c0cc02715d [+]
Joubert, J. C., & Chenavas, J. (1979). New compounds from high pressure. Journal of Solid State Chemistry, 27(1), 29-39. doi:10.1016/0022-4596(79)90142-7

McMillan, P. F. (2002). New materials from high-pressure experiments. Nature Materials, 1(1), 19-25. doi:10.1038/nmat716

Huppertz, H. (2011). New synthetic discoveries via high-pressure solid-state chemistry. Chem. Commun., 47(1), 131-140. doi:10.1039/c0cc02715d

Manjón, F. J., & Errandonea, D. (2009). Pressure-induced structural phase transitions in materials and earth sciences. physica status solidi (b), 246(1), 9-31. doi:10.1002/pssb.200844238

McMillan, P. F. (2005). Pressing on: The legacy of Percy W. Bridgman. Nature Materials, 4(10), 715-718. doi:10.1038/nmat1488

Davis, M. E. (2002). Ordered porous materials for emerging applications. Nature, 417(6891), 813-821. doi:10.1038/nature00785

Jiang, J., Yu, J., & Corma, A. (2010). Zeolithe mit sehr großen Poren als Bindeglied zwischen mikro- und mesoporösen Strukturen. Angewandte Chemie, 122(18), 3186-3212. doi:10.1002/ange.200904016

Jiang, J., Yu, J., & Corma, A. (2010). Extra-Large-Pore Zeolites: Bridging the Gap between Micro and Mesoporous Structures. Angewandte Chemie International Edition, 49(18), 3120-3145. doi:10.1002/anie.200904016

Hazen, R. M., & Finger, L. W. (1979). Polyhedral tilting: A common type of pure displacive phase transition and its relationship to analcite at high pressure. Phase Transitions, 1(1), 1-22. doi:10.1080/01411597908213181

Gatta, G. D. (2010). Extreme deformation mechanisms in open-framework silicates at high-pressure: Evidence of anomalous inter-tetrahedral angles. Microporous and Mesoporous Materials, 128(1-3), 78-84. doi:10.1016/j.micromeso.2009.08.006

Gatta, G. (2003). New insights on high-pressure behaviour of microporous materials from X-ray single-crystal data. Microporous and Mesoporous Materials, 61(1-3), 105-115. doi:10.1016/s1387-1811(03)00359-7

Greaves, G. N., Meneau, F., Sapelkin, A., Colyer, L. M., ap Gwynn, I., Wade, S., & Sankar, G. (2003). The rheology of collapsing zeolites amorphized by temperature and pressure. Nature Materials, 2(9), 622-629. doi:10.1038/nmat963

Greaves, G. N., Meneau, F., Kargl, F., Ward, D., Holliman, P., & Albergamo, F. (2007). Zeolite collapse and polyamorphism. Journal of Physics: Condensed Matter, 19(41), 415102. doi:10.1088/0953-8984/19/41/415102

Readman, J. E., Forster, P. M., Chapman, K. W., Chupas, P. J., Parise, J. B., & Hriljac, J. A. (2009). Pair distribution function analysis of pressure treated zeolite Na-A. Chemical Communications, (23), 3383. doi:10.1039/b902874a

Huang, Y., & Havenga, E. A. (2001). Why do zeolites with LTA structure undergo reversible amorphization under pressure? Chemical Physics Letters, 345(1-2), 65-71. doi:10.1016/s0009-2614(01)00856-9

Arletti, R., Ferro, O., Quartieri, S., Sani, A., Tabacchi, G., & Vezzalini, G. (2003). Structural deformation mechanisms of zeolites under pressure. American Mineralogist, 88(10), 1416-1422. doi:10.2138/am-2003-1004

Haines, J., Levelut, C., Isambert, A., Hébert, P., Kohara, S., Keen, D. A., … Andrault, D. (2009). Topologically Ordered Amorphous Silica Obtained from the Collapsed Siliceous Zeolite, Silicalite-1-F: A Step toward «Perfect» Glasses. Journal of the American Chemical Society, 131(34), 12333-12338. doi:10.1021/ja904054v

Lee, Y., Vogt, T., Hriljac, J. A., Parise, J. B., Hanson, J. C., & Kim, S. J. (2002). Non-framework cation migration and irreversible pressure-induced hydration in a zeolite. Nature, 420(6915), 485-489. doi:10.1038/nature01265

Lee, Y., Kao, C.-C., & Vogt, T. (2012). Thermal Expansion of the Superhydrated Small-Pore Zeolite Natrolite. The Journal of Physical Chemistry C, 116(5), 3286-3291. doi:10.1021/jp209514q

Rutter, M. D., Uchida, T., Secco, R. A., Huang, Y., & Wang, Y. (2001). Investigation of pressure-induced amorphization in hydrated zeolite Li-A and Na-A using synchrotron X-ray diffraction. Journal of Physics and Chemistry of Solids, 62(3), 599-606. doi:10.1016/s0022-3697(00)00222-5

Greaves, G. N. (2005). Identifying Vibrations That Destabilize Crystals and Characterize the Glassy State. Science, 308(5726), 1299-1302. doi:10.1126/science.1109411

HAZEN, R. M. (1983). Zeolite Molecular Sieve 4A: Anomalous Compressibility and Volume Discontinuities at High Pressure. Science, 219(4588), 1065-1067. doi:10.1126/science.219.4588.1065

Peral, I., & Íñiguez, J. (2006). Amorphization Induced by Pressure: Results for Zeolites and General Implications. Physical Review Letters, 97(22). doi:10.1103/physrevlett.97.225502

Corma, A., Rey, F., Rius, J., Sabater, M. J., & Valencia, S. (2004). Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites. Nature, 431(7006), 287-290. doi:10.1038/nature02909

a c [21] P bm P b2 P mbm [22] P mbm [23] [24] R exp R wp R F R B

Werner, P. E., Eriksson, L., & Westdahl, M. (1985). TREOR, a semi-exhaustive trial-and-error powder indexing program for all symmetries. Journal of Applied Crystallography, 18(5), 367-370. doi:10.1107/s0021889885010512

Grosse-Kunstleve, R. W., McCusker, L. B., & Baerlocher, C. (1999). Zeolite structure determination from powder diffraction data: applications of theFOCUSmethod. Journal of Applied Crystallography, 32(3), 536-542. doi:10.1107/s0021889899003453

McCusker, L. B., Liebau, F., & Engelhardt, G. (2001). Nomenclature of structural and compositional characteristics of ordered microporous and mesoporous materials with inorganic hosts(IUPAC Recommendations 2001). Pure and Applied Chemistry, 73(2), 381-394. doi:10.1351/pac200173020381

http://www.iza-structure.org/databases/ 2013

Rege, S. U., & Yang, R. T. (2002). Propane/propylene separation by pressure swing adsorption: sorbent comparison and multiplicity of cyclic steady states. Chemical Engineering Science, 57(7), 1139-1149. doi:10.1016/s0009-2509(01)00440-7

L. S. Cheng S. T. Wilson 2001

Yang, R. T., & Kikkinides, E. S. (1995). New sorbents for olefin/paraffin separations by adsorption viaπ -complexation. AIChE Journal, 41(3), 509-517. doi:10.1002/aic.690410309

Hedin, N., DeMartin, G. J., Strohmaier, K. G., & Reyes, S. C. (2007). PFG NMR self-diffusion of propylene in ITQ-29, CaA and NaCaA: Window size and cation effects. Microporous and Mesoporous Materials, 98(1-3), 182-188. doi:10.1016/j.micromeso.2006.08.017

Eldridge, R. B. (1993). Olefin/paraffin separation technology: a review. Industrial & Engineering Chemistry Research, 32(10), 2208-2212. doi:10.1021/ie00022a002

Grande, C. A., Gascon, J., Kapteijn, F., & Rodrigues, A. E. (2010). Propane/propylene separation with Li-exchanged zeolite 13X. Chemical Engineering Journal, 160(1), 207-214. doi:10.1016/j.cej.2010.03.044

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem