Goodman, R. P. (2005). Rapid Chiral Assembly of Rigid DNA Building Blocks for Molecular Nanofabrication. Science, 310(5754), 1661-1665. doi:10.1126/science.1120367
Nishikawa, M., Rattanakiat, S., & Takakura, Y. (2010). DNA-based nano-sized systems for pharmaceutical and biomedical applications. Advanced Drug Delivery Reviews, 62(6), 626-632. doi:10.1016/j.addr.2010.03.006
Chhabra, R., Sharma, J., Liu, Y., Rinker, S., & Yan, H. (2010). DNA Self-assembly for Nanomedicine. Advanced Drug Delivery Reviews, 62(6), 617-625. doi:10.1016/j.addr.2010.03.005
[+]
Goodman, R. P. (2005). Rapid Chiral Assembly of Rigid DNA Building Blocks for Molecular Nanofabrication. Science, 310(5754), 1661-1665. doi:10.1126/science.1120367
Nishikawa, M., Rattanakiat, S., & Takakura, Y. (2010). DNA-based nano-sized systems for pharmaceutical and biomedical applications. Advanced Drug Delivery Reviews, 62(6), 626-632. doi:10.1016/j.addr.2010.03.006
Chhabra, R., Sharma, J., Liu, Y., Rinker, S., & Yan, H. (2010). DNA Self-assembly for Nanomedicine. Advanced Drug Delivery Reviews, 62(6), 617-625. doi:10.1016/j.addr.2010.03.005
Schlossbauer, A., Kecht, J., & Bein, T. (2009). Biotin-Avidin as a Protease-Responsive Cap System for Controlled Guest Release from Colloidal Mesoporous Silica. Angewandte Chemie, 121(17), 3138-3141. doi:10.1002/ange.200805818
Schlossbauer, A., Kecht, J., & Bein, T. (2009). Biotin-Avidin as a Protease-Responsive Cap System for Controlled Guest Release from Colloidal Mesoporous Silica. Angewandte Chemie International Edition, 48(17), 3092-3095. doi:10.1002/anie.200805818
Park, C., Kim, H., Kim, S., & Kim, C. (2009). Enzyme Responsive Nanocontainers with Cyclodextrin Gatekeepers and Synergistic Effects in Release of Guests. Journal of the American Chemical Society, 131(46), 16614-16615. doi:10.1021/ja9061085
Bernardos, A., Mondragón, L., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Amorós, P. (2010). Enzyme-Responsive Intracellular Controlled Release Using Nanometric Silica Mesoporous Supports Capped with «Saccharides». ACS Nano, 4(11), 6353-6368. doi:10.1021/nn101499d
Wang, C., Li, Z., Cao, D., Zhao, Y.-L., Gaines, J. W., Bozdemir, O. A., … Stoddart, J. F. (2012). Stimulated Release of Size-Selected Cargos in Succession from Mesoporous Silica Nanoparticles. Angewandte Chemie, 124(22), 5556-5561. doi:10.1002/ange.201107960
Wang, C., Li, Z., Cao, D., Zhao, Y.-L., Gaines, J. W., Bozdemir, O. A., … Stoddart, J. F. (2012). Stimulated Release of Size-Selected Cargos in Succession from Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 51(22), 5460-5465. doi:10.1002/anie.201107960
Coll, C., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2012). Gated Silica Mesoporous Supports for Controlled Release and Signaling Applications. Accounts of Chemical Research, 46(2), 339-349. doi:10.1021/ar3001469
Luo, Z., Cai, K., Hu, Y., Zhao, L., Liu, P., Duan, L., & Yang, W. (2010). Mesoporous Silica Nanoparticles End-Capped with Collagen: Redox-Responsive Nanoreservoirs for Targeted Drug Delivery. Angewandte Chemie, 123(3), 666-669. doi:10.1002/ange.201005061
Luo, Z., Cai, K., Hu, Y., Zhao, L., Liu, P., Duan, L., & Yang, W. (2010). Mesoporous Silica Nanoparticles End-Capped with Collagen: Redox-Responsive Nanoreservoirs for Targeted Drug Delivery. Angewandte Chemie International Edition, 50(3), 640-643. doi:10.1002/anie.201005061
Porta, F., Lamers, G. E. M., Zink, J. I., & Kros, A. (2011). Peptide modified mesoporous silica nanocontainers. Physical Chemistry Chemical Physics, 13(21), 9982. doi:10.1039/c0cp02959a
Popat, A., Ross, B. P., Liu, J., Jambhrunkar, S., Kleitz, F., & Qiao, S. Z. (2012). Enzyme-Responsive Controlled Release of Covalently Bound Prodrug from Functional Mesoporous Silica Nanospheres. Angewandte Chemie, 124(50), 12654-12657. doi:10.1002/ange.201206416
Popat, A., Ross, B. P., Liu, J., Jambhrunkar, S., Kleitz, F., & Qiao, S. Z. (2012). Enzyme-Responsive Controlled Release of Covalently Bound Prodrug from Functional Mesoporous Silica Nanospheres. Angewandte Chemie International Edition, 51(50), 12486-12489. doi:10.1002/anie.201206416
Climent, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., Maquieira, A., & Amorós, P. (2010). Controlled Delivery Using Oligonucleotide-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie, 122(40), 7439-7441. doi:10.1002/ange.201001847
Climent, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., Maquieira, A., & Amorós, P. (2010). Controlled Delivery Using Oligonucleotide-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 49(40), 7281-7283. doi:10.1002/anie.201001847
Schlossbauer, A., Warncke, S., Gramlich, P. M. E., Kecht, J., Manetto, A., Carell, T., & Bein, T. (2010). Ein programmierbares, DNA-basiertes molekulares Ventil für kolloidales, mesoporöses Siliciumoxid. Angewandte Chemie, 122(28), 4842-4845. doi:10.1002/ange.201000827
Schlossbauer, A., Warncke, S., Gramlich, P. M. E., Kecht, J., Manetto, A., Carell, T., & Bein, T. (2010). A Programmable DNA-Based Molecular Valve for Colloidal Mesoporous Silica. Angewandte Chemie International Edition, 49(28), 4734-4737. doi:10.1002/anie.201000827
Zhu, C.-L., Lu, C.-H., Song, X.-Y., Yang, H.-H., & Wang, X.-R. (2011). Bioresponsive Controlled Release Using Mesoporous Silica Nanoparticles Capped with Aptamer-Based Molecular Gate. Journal of the American Chemical Society, 133(5), 1278-1281. doi:10.1021/ja110094g
Özalp, V. C., & Schäfer, T. (2011). Aptamer-Based Switchable Nanovalves for Stimuli-Responsive Drug Delivery. Chemistry - A European Journal, 17(36), 9893-9896. doi:10.1002/chem.201101403
Ruiz-Hernández, E., Baeza, A., & Vallet-Regí, M. (2011). Smart Drug Delivery through DNA/Magnetic Nanoparticle Gates. ACS Nano, 5(2), 1259-1266. doi:10.1021/nn1029229
Zhang, Y., Yuan, Q., Chen, T., Zhang, X., Chen, Y., & Tan, W. (2012). DNA-Capped Mesoporous Silica Nanoparticles as an Ion-Responsive Release System to Determine the Presence of Mercury in Aqueous Solutions. Analytical Chemistry, 84(4), 1956-1962. doi:10.1021/ac202993p
He, D., He, X., Wang, K., Cao, J., & Zhao, Y. (2012). A Photon-Fueled Gate-Like Delivery System Using i-Motif DNA Functionalized Mesoporous Silica Nanoparticles. Advanced Functional Materials, 22(22), 4704-4710. doi:10.1002/adfm.201201343
Chen, Z., Li, Z., Lin, Y., Yin, M., Ren, J., & Qu, X. (2013). Bioresponsive Hyaluronic Acid-Capped Mesoporous Silica Nanoparticles for Targeted Drug Delivery. Chemistry - A European Journal, 19(5), 1778-1783. doi:10.1002/chem.201202038
Baeza, A., Guisasola, E., Ruiz-Hernández, E., & Vallet-Regí, M. (2012). Magnetically Triggered Multidrug Release by Hybrid Mesoporous Silica Nanoparticles. Chemistry of Materials, 24(3), 517-524. doi:10.1021/cm203000u
Tarn, D., Xue, M., & Zink, J. I. (2013). pH-Responsive Dual Cargo Delivery from Mesoporous Silica Nanoparticles with a Metal-Latched Nanogate. Inorganic Chemistry, 52(4), 2044-2049. doi:10.1021/ic3024265
Hoffman, A. S. (2008). The origins and evolution of «controlled» drug delivery systems. Journal of Controlled Release, 132(3), 153-163. doi:10.1016/j.jconrel.2008.08.012
Vivero-Escoto, J. L., Slowing, I. I., Trewyn, B. G., & Lin, V. S.-Y. (2010). Mesoporous Silica Nanoparticles for Intracellular Controlled Drug Delivery. Small, 6(18), 1952-1967. doi:10.1002/smll.200901789
Climent, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., Rurack, K., & Amorós, P. (2009). The Determination of Methylmercury in Real Samples Using Organically Capped Mesoporous Inorganic Materials Capable of Signal Amplification. Angewandte Chemie, 121(45), 8671-8674. doi:10.1002/ange.200904243
Climent, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., Rurack, K., & Amorós, P. (2009). The Determination of Methylmercury in Real Samples Using Organically Capped Mesoporous Inorganic Materials Capable of Signal Amplification. Angewandte Chemie International Edition, 48(45), 8519-8522. doi:10.1002/anie.200904243
Choi, Y. L., Jaworski, J., Seo, M. L., Lee, S. J., & Jung, J. H. (2011). Controlled release using mesoporous silica nanoparticles functionalized with 18-crown-6 derivative. Journal of Materials Chemistry, 21(22), 7882. doi:10.1039/c1jm11334h
Cui, Y., Dong, H., Cai, X., Wang, D., & Li, Y. (2012). Mesoporous Silica Nanoparticles Capped with Disulfide-Linked PEG Gatekeepers for Glutathione-Mediated Controlled Release. ACS Applied Materials & Interfaces, 4(6), 3177-3183. doi:10.1021/am3005225
He, X., Zhao, Y., He, D., Wang, K., Xu, F., & Tang, J. (2012). ATP-Responsive Controlled Release System Using Aptamer-Functionalized Mesoporous Silica Nanoparticles. Langmuir, 28(35), 12909-12915. doi:10.1021/la302767b
Climent, E., Gröninger, D., Hecht, M., Walter, M. A., Martínez-Máñez, R., Weller, M. G., … Rurack, K. (2013). Selective, Sensitive, and Rapid Analysis with Lateral-Flow Assays Based on Antibody-Gated Dye-Delivery Systems: The Example of Triacetone Triperoxide. Chemistry - A European Journal, 19(13), 4117-4122. doi:10.1002/chem.201300031
Drexler, H. G., & Uphoff, C. C. (2002). Cytotechnology, 39(2), 75-90. doi:10.1023/a:1022913015916
Volokhov, D. V., Graham, L. J., Brorson, K. A., & Chizhikov, V. E. (2011). Mycoplasma testing of cell substrates and biologics: Review of alternative non-microbiological techniques. Molecular and Cellular Probes, 25(2-3), 69-77. doi:10.1016/j.mcp.2011.01.002
ROTTEM, S. (1993). Beware of mycoplasmas. Trends in Biotechnology, 11(4), 143-151. doi:10.1016/0167-7799(93)90089-r
Choppa, P. ., Vojdani, A., Tagle, C., Andrin, R., & Magtoto, L. (1998). Multiplex PCR for the detection ofMycoplasma fermentans, M. hominisandM. penetransin cell cultures and blood samples of patients with chronic fatigue syndrome. Molecular and Cellular Probes, 12(5), 301-308. doi:10.1006/mcpr.1998.0186
Sohaeverbeke, T., Gilroy, C., Bébéar, C., Dehais, J., & Taylor-Robinson, D. (1996). Mycoplasma fermentans in joints of patients with rheumatoid arthritis and other joint disorders. The Lancet, 347(9012), 1418. doi:10.1016/s0140-6736(96)91065-x
[-]