- -

Selective, Highly Sensitive, and Rapid Detection of Genomic DNA by Using Gated Materials: Mycoplasma Detection

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Selective, Highly Sensitive, and Rapid Detection of Genomic DNA by Using Gated Materials: Mycoplasma Detection

Show full item record

Climent Terol, E.; Mondragón Martínez, L.; Martínez Mañez, R.; Sancenón Galarza, F.; Marcos Martínez, MD.; Murguía Ibáñez, JR.; Amoros Del Toro, PJ.... (2013). Selective, Highly Sensitive, and Rapid Detection of Genomic DNA by Using Gated Materials: Mycoplasma Detection. Angewandte Chemie International Edition. 52(34):8938-8942. https://doi.org/10.1002/anie.201302954

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/36905

Files in this item

Item Metadata

Title: Selective, Highly Sensitive, and Rapid Detection of Genomic DNA by Using Gated Materials: Mycoplasma Detection
Author: Climent Terol, Estela Mondragón Martínez, Laura Martínez Mañez, Ramón Sancenón Galarza, Félix Marcos Martínez, María Dolores Murguía Ibáñez, José Ramón Amoros del Toro, Pedro Jose Rurack, Knut Pérez Payá, Enrique
UPV Unit: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Issued date:
Abstract:
The coupling of gated-indicator delivery with highly specific biochemical recognition is an innovative strategy for the detection of DNA sequences, able to compete with classical methods which need PCR amplification, in ...[+]
Subjects: Mesoporous silica nanoparticles , Responsive controlled release , Controlled drug delivery , Cell cultures , Rheumatoid arthritis , Mycoplasma , Fermentans , DNA , Gated materials , Amplification , Sensors , Contamination , Supports
Copyrigths: Cerrado
Source:
Angewandte Chemie International Edition. (issn: 1433-7851 )
DOI: 10.1002/anie.201302954
Publisher:
Wiley-VCH Verlag
Publisher version: http://onlinelibrary.wiley.com/doi/10.1002/anie.201302954/pdf
Project ID:
info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO09%2F2009%2F016/ES/Ayuda prometeo 2009 para el grupo de diseño y desarrollo de sensores/
info:eu-repo/grantAgreement/MICINN//MAT2009-14564-C04-01/ES/Nanomateriales Hibridos Para El Desarrollo De "Puertas Moleculares" De Aplicacion En Procesos De Reconocimiento Y Terapeutica Y Para La Deteccion De Explosivos./
info:eu-repo/grantAgreement/MICINN//SAF2010-15512/ES/MECANISMOS MOLECULARES DE MODULADORES DE APOPTOSIS/
Thanks:
Financial support from the Spanish Government (MAT2009-14564-C04-01 and SAF2010 15512), the Generalitat Valenciana (PROM-ETEO/2009/016 and 2010/005) is gratefully acknowledged. E. C. thanks the Ministerio de Educacion for ...[+]
Type: Artículo

References

Goodman, R. P. (2005). Rapid Chiral Assembly of Rigid DNA Building Blocks for Molecular Nanofabrication. Science, 310(5754), 1661-1665. doi:10.1126/science.1120367

Nishikawa, M., Rattanakiat, S., & Takakura, Y. (2010). DNA-based nano-sized systems for pharmaceutical and biomedical applications. Advanced Drug Delivery Reviews, 62(6), 626-632. doi:10.1016/j.addr.2010.03.006

Chhabra, R., Sharma, J., Liu, Y., Rinker, S., & Yan, H. (2010). DNA Self-assembly for Nanomedicine. Advanced Drug Delivery Reviews, 62(6), 617-625. doi:10.1016/j.addr.2010.03.005 [+]
Goodman, R. P. (2005). Rapid Chiral Assembly of Rigid DNA Building Blocks for Molecular Nanofabrication. Science, 310(5754), 1661-1665. doi:10.1126/science.1120367

Nishikawa, M., Rattanakiat, S., & Takakura, Y. (2010). DNA-based nano-sized systems for pharmaceutical and biomedical applications. Advanced Drug Delivery Reviews, 62(6), 626-632. doi:10.1016/j.addr.2010.03.006

Chhabra, R., Sharma, J., Liu, Y., Rinker, S., & Yan, H. (2010). DNA Self-assembly for Nanomedicine. Advanced Drug Delivery Reviews, 62(6), 617-625. doi:10.1016/j.addr.2010.03.005

Schlossbauer, A., Kecht, J., & Bein, T. (2009). Biotin-Avidin as a Protease-Responsive Cap System for Controlled Guest Release from Colloidal Mesoporous Silica. Angewandte Chemie, 121(17), 3138-3141. doi:10.1002/ange.200805818

Schlossbauer, A., Kecht, J., & Bein, T. (2009). Biotin-Avidin as a Protease-Responsive Cap System for Controlled Guest Release from Colloidal Mesoporous Silica. Angewandte Chemie International Edition, 48(17), 3092-3095. doi:10.1002/anie.200805818

Park, C., Kim, H., Kim, S., & Kim, C. (2009). Enzyme Responsive Nanocontainers with Cyclodextrin Gatekeepers and Synergistic Effects in Release of Guests. Journal of the American Chemical Society, 131(46), 16614-16615. doi:10.1021/ja9061085

Bernardos, A., Mondragón, L., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Amorós, P. (2010). Enzyme-Responsive Intracellular Controlled Release Using Nanometric Silica Mesoporous Supports Capped with «Saccharides». ACS Nano, 4(11), 6353-6368. doi:10.1021/nn101499d

Wang, C., Li, Z., Cao, D., Zhao, Y.-L., Gaines, J. W., Bozdemir, O. A., … Stoddart, J. F. (2012). Stimulated Release of Size-Selected Cargos in Succession from Mesoporous Silica Nanoparticles. Angewandte Chemie, 124(22), 5556-5561. doi:10.1002/ange.201107960

Wang, C., Li, Z., Cao, D., Zhao, Y.-L., Gaines, J. W., Bozdemir, O. A., … Stoddart, J. F. (2012). Stimulated Release of Size-Selected Cargos in Succession from Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 51(22), 5460-5465. doi:10.1002/anie.201107960

Coll, C., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2012). Gated Silica Mesoporous Supports for Controlled Release and Signaling Applications. Accounts of Chemical Research, 46(2), 339-349. doi:10.1021/ar3001469

Luo, Z., Cai, K., Hu, Y., Zhao, L., Liu, P., Duan, L., & Yang, W. (2010). Mesoporous Silica Nanoparticles End-Capped with Collagen: Redox-Responsive Nanoreservoirs for Targeted Drug Delivery. Angewandte Chemie, 123(3), 666-669. doi:10.1002/ange.201005061

Luo, Z., Cai, K., Hu, Y., Zhao, L., Liu, P., Duan, L., & Yang, W. (2010). Mesoporous Silica Nanoparticles End-Capped with Collagen: Redox-Responsive Nanoreservoirs for Targeted Drug Delivery. Angewandte Chemie International Edition, 50(3), 640-643. doi:10.1002/anie.201005061

Porta, F., Lamers, G. E. M., Zink, J. I., & Kros, A. (2011). Peptide modified mesoporous silica nanocontainers. Physical Chemistry Chemical Physics, 13(21), 9982. doi:10.1039/c0cp02959a

Popat, A., Ross, B. P., Liu, J., Jambhrunkar, S., Kleitz, F., & Qiao, S. Z. (2012). Enzyme-Responsive Controlled Release of Covalently Bound Prodrug from Functional Mesoporous Silica Nanospheres. Angewandte Chemie, 124(50), 12654-12657. doi:10.1002/ange.201206416

Popat, A., Ross, B. P., Liu, J., Jambhrunkar, S., Kleitz, F., & Qiao, S. Z. (2012). Enzyme-Responsive Controlled Release of Covalently Bound Prodrug from Functional Mesoporous Silica Nanospheres. Angewandte Chemie International Edition, 51(50), 12486-12489. doi:10.1002/anie.201206416

Climent, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., Maquieira, A., & Amorós, P. (2010). Controlled Delivery Using Oligonucleotide-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie, 122(40), 7439-7441. doi:10.1002/ange.201001847

Climent, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., Maquieira, A., & Amorós, P. (2010). Controlled Delivery Using Oligonucleotide-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 49(40), 7281-7283. doi:10.1002/anie.201001847

Schlossbauer, A., Warncke, S., Gramlich, P. M. E., Kecht, J., Manetto, A., Carell, T., & Bein, T. (2010). Ein programmierbares, DNA-basiertes molekulares Ventil für kolloidales, mesoporöses Siliciumoxid. Angewandte Chemie, 122(28), 4842-4845. doi:10.1002/ange.201000827

Schlossbauer, A., Warncke, S., Gramlich, P. M. E., Kecht, J., Manetto, A., Carell, T., & Bein, T. (2010). A Programmable DNA-Based Molecular Valve for Colloidal Mesoporous Silica. Angewandte Chemie International Edition, 49(28), 4734-4737. doi:10.1002/anie.201000827

Zhu, C.-L., Lu, C.-H., Song, X.-Y., Yang, H.-H., & Wang, X.-R. (2011). Bioresponsive Controlled Release Using Mesoporous Silica Nanoparticles Capped with Aptamer-Based Molecular Gate. Journal of the American Chemical Society, 133(5), 1278-1281. doi:10.1021/ja110094g

Özalp, V. C., & Schäfer, T. (2011). Aptamer-Based Switchable Nanovalves for Stimuli-Responsive Drug Delivery. Chemistry - A European Journal, 17(36), 9893-9896. doi:10.1002/chem.201101403

Ruiz-Hernández, E., Baeza, A., & Vallet-Regí, M. (2011). Smart Drug Delivery through DNA/Magnetic Nanoparticle Gates. ACS Nano, 5(2), 1259-1266. doi:10.1021/nn1029229

Zhang, Y., Yuan, Q., Chen, T., Zhang, X., Chen, Y., & Tan, W. (2012). DNA-Capped Mesoporous Silica Nanoparticles as an Ion-Responsive Release System to Determine the Presence of Mercury in Aqueous Solutions. Analytical Chemistry, 84(4), 1956-1962. doi:10.1021/ac202993p

He, D., He, X., Wang, K., Cao, J., & Zhao, Y. (2012). A Photon-Fueled Gate-Like Delivery System Using i-Motif DNA Functionalized Mesoporous Silica Nanoparticles. Advanced Functional Materials, 22(22), 4704-4710. doi:10.1002/adfm.201201343

Chen, Z., Li, Z., Lin, Y., Yin, M., Ren, J., & Qu, X. (2013). Bioresponsive Hyaluronic Acid-Capped Mesoporous Silica Nanoparticles for Targeted Drug Delivery. Chemistry - A European Journal, 19(5), 1778-1783. doi:10.1002/chem.201202038

Baeza, A., Guisasola, E., Ruiz-Hernández, E., & Vallet-Regí, M. (2012). Magnetically Triggered Multidrug Release by Hybrid Mesoporous Silica Nanoparticles. Chemistry of Materials, 24(3), 517-524. doi:10.1021/cm203000u

Tarn, D., Xue, M., & Zink, J. I. (2013). pH-Responsive Dual Cargo Delivery from Mesoporous Silica Nanoparticles with a Metal-Latched Nanogate. Inorganic Chemistry, 52(4), 2044-2049. doi:10.1021/ic3024265

Hoffman, A. S. (2008). The origins and evolution of «controlled» drug delivery systems. Journal of Controlled Release, 132(3), 153-163. doi:10.1016/j.jconrel.2008.08.012

Vivero-Escoto, J. L., Slowing, I. I., Trewyn, B. G., & Lin, V. S.-Y. (2010). Mesoporous Silica Nanoparticles for Intracellular Controlled Drug Delivery. Small, 6(18), 1952-1967. doi:10.1002/smll.200901789

Climent, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., Rurack, K., & Amorós, P. (2009). The Determination of Methylmercury in Real Samples Using Organically Capped Mesoporous Inorganic Materials Capable of Signal Amplification. Angewandte Chemie, 121(45), 8671-8674. doi:10.1002/ange.200904243

Climent, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., Rurack, K., & Amorós, P. (2009). The Determination of Methylmercury in Real Samples Using Organically Capped Mesoporous Inorganic Materials Capable of Signal Amplification. Angewandte Chemie International Edition, 48(45), 8519-8522. doi:10.1002/anie.200904243

Choi, Y. L., Jaworski, J., Seo, M. L., Lee, S. J., & Jung, J. H. (2011). Controlled release using mesoporous silica nanoparticles functionalized with 18-crown-6 derivative. Journal of Materials Chemistry, 21(22), 7882. doi:10.1039/c1jm11334h

Cui, Y., Dong, H., Cai, X., Wang, D., & Li, Y. (2012). Mesoporous Silica Nanoparticles Capped with Disulfide-Linked PEG Gatekeepers for Glutathione-Mediated Controlled Release. ACS Applied Materials & Interfaces, 4(6), 3177-3183. doi:10.1021/am3005225

He, X., Zhao, Y., He, D., Wang, K., Xu, F., & Tang, J. (2012). ATP-Responsive Controlled Release System Using Aptamer-Functionalized Mesoporous Silica Nanoparticles. Langmuir, 28(35), 12909-12915. doi:10.1021/la302767b

Climent, E., Gröninger, D., Hecht, M., Walter, M. A., Martínez-Máñez, R., Weller, M. G., … Rurack, K. (2013). Selective, Sensitive, and Rapid Analysis with Lateral-Flow Assays Based on Antibody-Gated Dye-Delivery Systems: The Example of Triacetone Triperoxide. Chemistry - A European Journal, 19(13), 4117-4122. doi:10.1002/chem.201300031

Drexler, H. G., & Uphoff, C. C. (2002). Cytotechnology, 39(2), 75-90. doi:10.1023/a:1022913015916

Volokhov, D. V., Graham, L. J., Brorson, K. A., & Chizhikov, V. E. (2011). Mycoplasma testing of cell substrates and biologics: Review of alternative non-microbiological techniques. Molecular and Cellular Probes, 25(2-3), 69-77. doi:10.1016/j.mcp.2011.01.002

ROTTEM, S. (1993). Beware of mycoplasmas. Trends in Biotechnology, 11(4), 143-151. doi:10.1016/0167-7799(93)90089-r

Choppa, P. ., Vojdani, A., Tagle, C., Andrin, R., & Magtoto, L. (1998). Multiplex PCR for the detection ofMycoplasma fermentans, M. hominisandM. penetransin cell cultures and blood samples of patients with chronic fatigue syndrome. Molecular and Cellular Probes, 12(5), 301-308. doi:10.1006/mcpr.1998.0186

Sohaeverbeke, T., Gilroy, C., Bébéar, C., Dehais, J., & Taylor-Robinson, D. (1996). Mycoplasma fermentans in joints of patients with rheumatoid arthritis and other joint disorders. The Lancet, 347(9012), 1418. doi:10.1016/s0140-6736(96)91065-x

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record