- -

An artificial neural network approach to the estimation of stem water potential from frequency domain reflectometry soil moisture measurements and meteorological data

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An artificial neural network approach to the estimation of stem water potential from frequency domain reflectometry soil moisture measurements and meteorological data

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martí Pérez, Pau Carles es_ES
dc.contributor.author Gasque Albalate, Maria es_ES
dc.contributor.author González Altozano, Pablo es_ES
dc.date.accessioned 2014-04-17T09:30:19Z
dc.date.issued 2013-02
dc.identifier.issn 0168-1699
dc.identifier.uri http://hdl.handle.net/10251/37059
dc.description.abstract Stem water potential seems to be a sensitive measure of plant water status. Nonetheless, it is a labour-intensive measurement and is not suited for automatic irrigation scheduling or control. This study describes the application of artificial neural networks to estimate stem water potential from soil moisture at different depths and standard meteorological variables, considering a limited data set. The experiment was carried out with `Navelina¿ citrus trees grafted on `Cleopatra¿ mandarin. Principal components analysis and multiple linear regression were used preliminarily to assess the relationships among observations and to propose other models to allow a comparative analysis, respectively. Two principal components account for the systematic data variation. The optimum regression equation of stem water potential considered temperature, relative humidity, solar radiation and soil moisture at 50 cm as input variables, with a determination coefficient of 0.852. When compared with their corresponding regression models, ANNs presented considerably higher performance accuracy (with an optimum determination coefficient of 0.926) due to a higher input-output mapping ability. es_ES
dc.description.sponsorship The authors are grateful to TECVASA, which obtained a subsidy from the Conselleria de Agricultura, Pesca y Alimentacion de la Generalitat Valenciana (DOCV 5493, 19 April 2007, no. exp.: 2007TAHAVAL00018), and to the Valencian Institute for Agricultural Research (IVIA) for providing the meteorological data for this study. en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Computers and Electronics in Agriculture es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Frequency domain reflectometry es_ES
dc.subject Irrigation scheduling es_ES
dc.subject Principal component analysis es_ES
dc.subject Artificial neural networks es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.subject.classification INGENIERIA AGROFORESTAL es_ES
dc.title An artificial neural network approach to the estimation of stem water potential from frequency domain reflectometry soil moisture measurements and meteorological data es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.compag.2012.12.001
dc.relation.projectID info:eu-repo/grantAgreement/GVA//2007TAHAVAL0001/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Rural y Agroalimentaria - Departament d'Enginyeria Rural i Agroalimentària es_ES
dc.description.bibliographicCitation Martí Pérez, PC.; Gasque Albalate, M.; González Altozano, P. (2013). An artificial neural network approach to the estimation of stem water potential from frequency domain reflectometry soil moisture measurements and meteorological data. Computers and Electronics in Agriculture. 91:75-86. https://doi.org/10.1016/j.compag.2012.12.001 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.compag.2012.12.001 es_ES
dc.description.upvformatpinicio 75 es_ES
dc.description.upvformatpfin 86 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 91 es_ES
dc.relation.senia 255253
dc.contributor.funder Generalitat Valenciana es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem