- -

Synthesis of PPy/PW12O403- organic-inorganic hybrid material on polyester yarns and subsequent weaving to obtain conductive fabrics

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Synthesis of PPy/PW12O403- organic-inorganic hybrid material on polyester yarns and subsequent weaving to obtain conductive fabrics

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Romero, Eduardo es_ES
dc.contributor.author Molina Puerto, Javier es_ES
dc.contributor.author Del Río García, Ana Isabel es_ES
dc.contributor.author Bonastre Cano, José Antonio es_ES
dc.contributor.author Cases Iborra, Francisco Javier es_ES
dc.date.accessioned 2014-04-17T11:04:53Z
dc.date.issued 2011-09
dc.identifier.issn 0040-5175
dc.identifier.uri http://hdl.handle.net/10251/37063
dc.description.abstract In this paper, we study the morphological, chemical and electrochemical characteristics of conductive fabrics obtained by weaving conductive yarns of polyester chemically coated with PPy (polypyrrole)/PW12O403-. The weaving process allows us to obtain conductive fabrics with higher dimensions than those traditionally obtained by in-situ chemical oxidation methods. Untwisted yarns and satin fabrics produced the most satisfactory results. The yarns of PES - PPy/PW12O403- as well as the fabric obtained after weaving, were chemically characterized by means of Fourier transform infrared spectroscopy with attenuated total reflection and energy dispersive X-ray. Scanning electron microscopy was employed to observe the morphology of the coating as well as the formation of defects during the weaving process. Electrochemical impedance spectroscopy was employed to measure the conductivity of the fabrics and the conductive nature by means of the phase angle. The process was satisfactory since the coating of polypyrrole was not excessively damaged by the weaving process es_ES
dc.description.sponsorship This work was supported by the Spanish Ministerio de Ciencia y Tecnologia and European Union Funds (FEDER) (grant number CTM2010-18842-C02-02); and Universidad Politecnica de Valencia (grant number PAID-06-10). en_EN
dc.language Inglés es_ES
dc.publisher SAGE Publications (UK and US) es_ES
dc.relation.ispartof Textile Research Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Conductive fabrics es_ES
dc.subject Polyoxometallate es_ES
dc.subject Polypyrrole es_ES
dc.subject Polyester yarns es_ES
dc.subject.classification QUIMICA FISICA es_ES
dc.title Synthesis of PPy/PW12O403- organic-inorganic hybrid material on polyester yarns and subsequent weaving to obtain conductive fabrics es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1177/0040517511407379
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-10/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTM2010-18842-C02-02/ES/TRATAMIENTO ELECTROQUIMICO DE DISOLUCIONES DE COLORANTES REACTIVOS EMPLEADOS EN LA INDUSTRIA TEXTIL Y DESARROLLO DE NUEVOS MATERIALES ELECTRODICOS./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Textil y Papelera - Departament d'Enginyeria Tèxtil i Paperera es_ES
dc.description.bibliographicCitation Romero, E.; Molina Puerto, J.; Del Río García, AI.; Bonastre Cano, JA.; Cases Iborra, FJ. (2011). Synthesis of PPy/PW12O403- organic-inorganic hybrid material on polyester yarns and subsequent weaving to obtain conductive fabrics. Textile Research Journal. 81(14):1427-1437. https://doi.org/10.1177/0040517511407379 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://trj.sagepub.com/content/81/14/1427 es_ES
dc.description.upvformatpinicio 1427 es_ES
dc.description.upvformatpfin 1437 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 81 es_ES
dc.description.issue 14 es_ES
dc.relation.senia 193372
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Ciencia y Tecnología es_ES
dc.description.references Service, R. F. (2003). TECHNOLOGY: Electronic Textiles Charge Ahead. Science, 301(5635), 909-911. doi:10.1126/science.301.5635.909 es_ES
dc.description.references De Rossi, D. (2007). A logical step. Nature Materials, 6(5), 328-329. doi:10.1038/nmat1892 es_ES
dc.description.references Hamedi, M., Forchheimer, R., & Inganäs, O. (2007). Towards woven logic from organic electronic fibres. Nature Materials, 6(5), 357-362. doi:10.1038/nmat1884 es_ES
dc.description.references Lekpittaya, P., Yanumet, N., Grady, B. P., & O’Rear, E. A. (2004). Resistivity of conductive polymer-coated fabric. Journal of Applied Polymer Science, 92(4), 2629-2636. doi:10.1002/app.20270 es_ES
dc.description.references Kincal, D., Kumar, A., Child, A. D., & Reynolds, J. R. (1998). Conductivity switching in polypyrrole-coated textile fabrics as gas sensors. Synthetic Metals, 92(1), 53-56. doi:10.1016/s0379-6779(98)80022-2 es_ES
dc.description.references Wu, J., Zhou, D., Too, C. O., & Wallace, G. G. (2005). Conducting polymer coated lycra. Synthetic Metals, 155(3), 698-701. doi:10.1016/j.synthmet.2005.08.032 es_ES
dc.description.references Oh, K. W., Park, H. J., & Kim, S. H. (2003). Stretchable conductive fabric for electrotherapy. Journal of Applied Polymer Science, 88(5), 1225-1229. doi:10.1002/app.11783 es_ES
dc.description.references Kim, S. H., Oh, K. W., & Bahk, J. H. (2004). Electrochemically synthesized polypyrrole and Cu-plated nylon/spandex for electrotherapeutic pad electrode. Journal of Applied Polymer Science, 91(6), 4064-4071. doi:10.1002/app.13625 es_ES
dc.description.references Bhat, N. V., Seshadri, D. T., Nate, M. M., & Gore, A. V. (2006). Development of conductive cotton fabrics for heating devices. Journal of Applied Polymer Science, 102(5), 4690-4695. doi:10.1002/app.24708 es_ES
dc.description.references Hakansson, E., Kaynak, A., Lin, T., Nahavandi, S., Jones, T., & Hu, E. (2004). Characterization of conducting polymer coated synthetic fabrics for heat generation. Synthetic Metals, 144(1), 21-28. doi:10.1016/j.synthmet.2004.01.003 es_ES
dc.description.references Boutrois, J. P., Jolly, R., & Pétrescu, C. (1997). Process of polypyrrole deposit on textile. Product characteristics and applications. Synthetic Metals, 85(1-3), 1405-1406. doi:10.1016/s0379-6779(97)80294-9 es_ES
dc.description.references Kuhn, H. H., Child, A. D., & Kimbrell, W. C. (1995). Toward real applications of conductive polymers. Synthetic Metals, 71(1-3), 2139-2142. doi:10.1016/0379-6779(94)03198-f es_ES
dc.description.references Varesano, A., & Tonin, C. (2008). Improving Electrical Performances of Wool Textiles: Synthesis of Conducting Polypyrrole on the Fiber Surface. Textile Research Journal, 78(12), 1110-1115. doi:10.1177/0040517507077488 es_ES
dc.description.references Najar, S. S., Kaynak, A., & Foitzik, R. C. (2007). Conductive wool yarns by continuous vapour phase polymerization of pyrrole. Synthetic Metals, 157(1), 1-4. doi:10.1016/j.synthmet.2006.11.003 es_ES
dc.description.references Kaynak, A., Najar, S. S., & Foitzik, R. C. (2008). Conducting nylon, cotton and wool yarns by continuous vapor polymerization of pyrrole. Synthetic Metals, 158(1-2), 1-5. doi:10.1016/j.synthmet.2007.10.016 es_ES
dc.description.references Neoh, K. G., Young, T. T., Kang, E. T., & Tan, K. L. (1997). Structural and mechanical degradation of polypyrrole films due to aqueous media and heat treatment and the subsequent redoping characteristics. Journal of Applied Polymer Science, 64(3), 519-526. doi:10.1002/(sici)1097-4628(19970418)64:3<519::aid-app8>3.0.co;2-n es_ES
dc.description.references Lin, T., Wang, L., Wang, X., & Kaynak, A. (2005). Polymerising pyrrole on polyester textiles and controlling the conductivity through coating thickness. Thin Solid Films, 479(1-2), 77-82. doi:10.1016/j.tsf.2004.11.146 es_ES
dc.description.references Ferrero, F., Napoli, L., Tonin, C., & Varesano, A. (2006). Pyrrole chemical polymerization on textiles: Kinetics and operating conditions. Journal of Applied Polymer Science, 102(5), 4121-4126. doi:10.1002/app.24149 es_ES
dc.description.references Garg, S., Hurren, C., & Kaynak, A. (2007). Improvement of adhesion of conductive polypyrrole coating on wool and polyester fabrics using atmospheric plasma treatment. Synthetic Metals, 157(1), 41-47. doi:10.1016/j.synthmet.2006.12.004 es_ES
dc.description.references Molina, J., del Río, A. I., Bonastre, J., & Cases, F. (2008). Chemical and electrochemical polymerisation of pyrrole on polyester textiles in presence of phosphotungstic acid. European Polymer Journal, 44(7), 2087-2098. doi:10.1016/j.eurpolymj.2008.04.007 es_ES
dc.description.references Seung Lee, H., & Hong, J. (2000). Chemical synthesis and characterization of polypyrrole coated on porous membranes and its electrochemical stability. Synthetic Metals, 113(1-2), 115-119. doi:10.1016/s0379-6779(00)00193-4 es_ES
dc.description.references Gasana, E., Westbroek, P., Hakuzimana, J., De Clerck, K., Priniotakis, G., Kiekens, P., & Tseles, D. (2006). Electroconductive textile structures through electroless deposition of polypyrrole and copper at polyaramide surfaces. Surface and Coatings Technology, 201(6), 3547-3551. doi:10.1016/j.surfcoat.2006.08.128 es_ES
dc.description.references Dall’Acqua, L., Tonin, C., Varesano, A., Canetti, M., Porzio, W., & Catellani, M. (2006). Vapour phase polymerisation of pyrrole on cellulose-based textile substrates. Synthetic Metals, 156(5-6), 379-386. doi:10.1016/j.synthmet.2005.12.021 es_ES
dc.description.references Dall’Acqua, L., Tonin, C., Peila, R., Ferrero, F., & Catellani, M. (2004). Performances and properties of intrinsic conductive cellulose–polypyrrole textiles. Synthetic Metals, 146(2), 213-221. doi:10.1016/j.synthmet.2004.07.005 es_ES
dc.description.references Gomez-Romero, P. (2001). Hybrid Organic-Inorganic Materials—In Search of Synergic Activity. Advanced Materials, 13(3), 163-174. doi:10.1002/1521-4095(200102)13:3<163::aid-adma163>3.0.co;2-u es_ES
dc.description.references Cui, Y., Wu, Q., & Mao, J. (2004). Preparation and conductivity of polypyrrole molybdotungstovanadogermanic heteropoly acid hybrid material. Materials Letters, 58(19), 2354-2356. doi:10.1016/j.matlet.2004.02.037 es_ES
dc.description.references KORMALI, P., TRIANTIS, T., DIMOTIKALI, D., HISKIA, A., & PAPACONSTANTINOU, E. (2006). On the photooxidative behavior of TiO2 and PW12O403−: OH radicals versus holes. Applied Catalysis B: Environmental, 68(3-4), 139-146. doi:10.1016/j.apcatb.2006.07.024 es_ES
dc.description.references DEVASSY, B., LEFEBVRE, F., & HALLIGUDI, S. (2005). Zirconia-supported 12-tungstophosphoric acid as a solid catalyst for the synthesis of linear alkyl benzenes. Journal of Catalysis, 231(1), 1-10. doi:10.1016/j.jcat.2004.09.024 es_ES
dc.description.references Zhu, J., Wei, S., Zhang, L., Mao, Y., Ryu, J., Mavinakuli, P., … Guo, Z. (2010). Conductive Polypyrrole/Tungsten Oxide Metacomposites with Negative Permittivity. The Journal of Physical Chemistry C, 114(39), 16335-16342. doi:10.1021/jp1062463 es_ES
dc.description.references Kuhn HH and Child AD Electrically conducting textiles. In: Skotheim TA, Elsenbaumer RL and Reynolds JR (eds) Handbook of conducting polymers . New York: Marcel Dekker, Inc, 1998, pp. 993-1013. es_ES
dc.description.references Avlyanov, J. K., Kuhn, H. H., Josefowicz, J. Y., & MacDiarmid, A. G. (1997). In-situ deposited thin films of polypyrrole: conformational changes induced by variation of dopant and substrate surface. Synthetic Metals, 84(1-3), 153-154. doi:10.1016/s0379-6779(97)80689-3 es_ES
dc.description.references Vishnuvardhan, T. K., Kulkarni, V. R., Basavaraja, C., & Raghavendra, S. C. (2006). Synthesis, characterization and a.c. conductivity of polypyrrole/Y2O3 composites. Bulletin of Materials Science, 29(1), 77-83. doi:10.1007/bf02709360 es_ES
dc.description.references Feng, W., Zhang, T. R., Liu, Y., Lu, R., Zhao, Y. Y., & Yao, J. N. (2003). Journal of Materials Science, 38(5), 1045-1048. doi:10.1023/a:1022302031156 es_ES
dc.description.references Su, W., & Iroh, J. O. (1999). Electropolymerization of pyrrole on steel substrate in the presence of oxalic acid and amines. Electrochimica Acta, 44(13), 2173-2184. doi:10.1016/s0013-4686(98)00343-0 es_ES
dc.description.references López, J., Parres, F., Rico, I., Molina, J., Bonastre, J., & Cases, F. (2010). Monitoring the polymerization process of polypyrrole films by thermogravimetric and X-ray analysis. Journal of Thermal Analysis and Calorimetry, 102(2), 695-701. doi:10.1007/s10973-010-0870-1 es_ES
dc.description.references Andanson, J.-M., & Kazarian, S. G. (2008). In situ ATR-FTIR Spectroscopy of Poly(ethylene terephthalate) Subjected to High-Temperature Methanol. Macromolecular Symposia, 265(1), 195-204. doi:10.1002/masy.200850521 es_ES
dc.description.references Al-Jabareen, A., Illescas, S., Maspoch, M. L., & Santana, O. O. (2010). Effects of composition and transesterification catalysts on the physico-chemical and dynamic properties of PC/PET blends rich in PC. Journal of Materials Science, 45(24), 6623-6633. doi:10.1007/s10853-010-4753-4 es_ES
dc.description.references Gregory, R. V., Kimbrell, W. C., & Kuhn, H. H. (1989). Conductive textiles. Synthetic Metals, 28(1-2), 823-835. doi:10.1016/0379-6779(89)90610-3 es_ES
dc.description.references Textor, T., & Mahltig, B. (2010). A sol–gel based surface treatment for preparation of water repellent antistatic textiles. Applied Surface Science, 256(6), 1668-1674. doi:10.1016/j.apsusc.2009.09.091 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem