- -

Uncertainty in Postprandial Model Identification in type 1 Diabetes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Uncertainty in Postprandial Model Identification in type 1 Diabetes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.advisor Bondía Company, Jorge es_ES
dc.contributor.advisor Rossetti, Paolo es_ES
dc.contributor.author Laguna Sanz, Alejandro José es_ES
dc.date.accessioned 2014-04-30T10:20:40Z
dc.date.available 2014-04-30T10:20:40Z
dc.date.created 2014-04-04T10:00:19Z es_ES
dc.date.issued 2014-04-30T10:20:37Z es_ES
dc.identifier.isbn 978-84-9048-232-2
dc.identifier.uri http://hdl.handle.net/10251/37191
dc.description.abstract Postprandial characterization of patients with type 1 diabetes is crucial for the development of an automatic glucose control system (Artificial Pancreas). Uncertainty sources within the patient, and variability of the glucose response between patients, are a challenge for individual patients model identification leading to poor predictability with current methods. Also, continuous glucose monitors, which have been the springboard for research towards a domiciliary artificial pancreas, still introduce large measurement errors, greatly complicating the characterization of the patient. In this thesis, individual model identification characterizing intra-patient variability from domiciliary data is addressed. First, literature models are reviewed. Next, we investigate the collection of data, and how can it be improved using optimal experiment design. Data gathering improvement is later applied to an ambulatory clinical protocol implemented at the Hospital Clínic Universitari de València, and data are collected from twelve patients following a set of mixed meal studies. With regard to the uncertainty of the glucose monitors, two continuous glucose monitoring devices are analyzed and statistically modeled. The models of these devices are used for in silico simulations and the analysis of identification methods. Identification using intervals models is then performed, showing an inherent capability for characterization of both the patient and the related uncertainty. First an in silico study is conducted in order to assess the feasibility of the identifications. Then, model identification is addressed from real patient data, increasing the complexity of the problem. As conclusion a new method for interval model identification is developed and successfully validated from clinical data. es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València
dc.rights Reserva de todos los derechos es_ES
dc.source Riunet es_ES
dc.subject Interval Model es_ES
dc.subject Diabetes es_ES
dc.subject Physiology es_ES
dc.subject Uncertainty es_ES
dc.subject Experiment Design es_ES
dc.subject Statistical modeling es_ES
dc.subject Identification es_ES
dc.subject Variabilility es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title Uncertainty in Postprandial Model Identification in type 1 Diabetes
dc.type Tesis doctoral es_ES
dc.identifier.doi 10.4995/Thesis/10251/37191 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.description.bibliographicCitation Laguna Sanz, AJ. (2014). Uncertainty in Postprandial Model Identification in type 1 Diabetes [Tesis doctoral]. Editorial Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/37191 es_ES
dc.description.accrualMethod TESIS es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.tesis 4280 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem