Mostrar el registro sencillo del ítem
dc.contributor.author | Cano Gómez, Antonio | es_ES |
dc.contributor.author | Pin, Jean-Eric | es_ES |
dc.date.accessioned | 2014-05-06T10:07:23Z | |
dc.date.issued | 2012-05 | |
dc.identifier.issn | 0022-4049 | |
dc.identifier.uri | http://hdl.handle.net/10251/37245 | |
dc.description.abstract | Length preserving morphisms and inverse of substitutions are two well-studied operations on regular languages. Their connection with varieties generated by power monoids was established independently by Reutenauer and Straubing in 1979. More recently, an ordered version of this theory was proposed by Polák and by the authors. In this paper, we present an improved version of these results and obtain the following consequences. Given a variety of finite ordered monoids V, let P ¿V be the variety of finite ordered monoids generated by the upper set monoids of members of V. Then P ¿(P ¿V)=P ¿V. This contrasts with the known results for the unordered case: the operator PV corresponding to power monoids satisfies P 3V=P 4V, but the varieties V, PV, P 2V and P 3V can be distinct. © 2011 Elsevier B.V. | es_ES |
dc.description.sponsorship | Work supported by the integrated action Picasso 19245ZC and by the AuthoMathA Programme of the European Science Foundation. The first author was supported by the project Tecnicas de Inferencia Gramatical y aplicacion al procesamiento de biosecuencias (TIN2007-60769) supported by the Spanish Ministry of Education and Sciences. The second author was supported by the project ANR 2010 BLAN 0202 02 FREC. | en_EN |
dc.format.extent | 6 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Pure and Applied Algebra | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Varieties | es_ES |
dc.subject | Semigroups | es_ES |
dc.subject | Languages | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Upper set monoids and length preserving morphisms | es_ES |
dc.type | Artículo | es_ES |
dc.embargo.lift | 10000-01-01 | |
dc.embargo.terms | forever | es_ES |
dc.identifier.doi | 10.1016/j.jpaa.2011.10.022 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//HF2008-0009/ES/HF2008-0009/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ANR//ANR-10-BLAN-0202/FR/Frontiers of recognizability/FREC/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//TIN2007-60769/ES/TECNICAS DE INFERENCIA GRAMATICAL Y APLICACION AL PROCESAMIENTO DE BIOSECUENCIAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Cano Gómez, A.; Pin, J. (2012). Upper set monoids and length preserving morphisms. Journal of Pure and Applied Algebra. 216(5):1178-1183. https://doi.org/10.1016/j.jpaa.2011.10.022 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1016/j.jpaa.2011.10.022 | es_ES |
dc.description.upvformatpinicio | 1178 | es_ES |
dc.description.upvformatpfin | 1183 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 216 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.senia | 245447 | |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |
dc.contributor.funder | Agence Nationale de la Recherche, Francia | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación |