- -

Simultaneous segmentation and grading of anatomical structures for patient's classification: application to Alzheimer's Disease

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Simultaneous segmentation and grading of anatomical structures for patient's classification: application to Alzheimer's Disease

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Coupé, Pierrick es_ES
dc.contributor.author Eskildsen, Simon F. es_ES
dc.contributor.author Manjón Herrera, José Vicente es_ES
dc.contributor.author Fonov, Vladimir S. es_ES
dc.contributor.author Collins, D. Louis es_ES
dc.contributor.author Alzheimer's Dis Neuroimaging
dc.date.accessioned 2014-05-06T18:19:48Z
dc.date.issued 2012-02-15
dc.identifier.issn 1053-8119
dc.identifier.uri http://hdl.handle.net/10251/37262
dc.description Data used in the preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu/ADNI). es_ES
dc.description.abstract In this paper, we propose an innovative approach to robustly and accurately detect Alzheimer's disease (AD) based on the distinction of specific atrophic patterns of anatomical structures such as hippocampus (HC) and entorhinal cortex (EC). The proposed method simultaneously performs segmentation and grading of structures to efficiently capture the anatomical alterations caused by AD. Known as SNIPE (Scoring by Non-local Image Patch Estimator), the novel proposed grading measure is based on a nonlocal patch-based frame-work and estimates the similarity of the patch surrounding the voxel under study with all the patches present in different training populations. In this study, the training library was composed of two populations: 50 cognitively normal subjects (CN) and 50 patients with AD, randomly selected from the ADNI database. During our experiments, the classification accuracy of patients (CN vs. AD) using several biomarkers was compared: HC and EC volumes, the grade of these structures and finally the combination of their volume and their grade. Tests were completed in a leave-one-out framework using discriminant analysis. First, we showed that biomarkers based on HC provide better classification accuracy than biomarkers based on EC. Second, we demonstrated that structure grading is a more powerful measure than structure volume to distinguish both populations with a classification accuracy of 90%. Finally, by adding the ages of subjects in order to better separate age-related structural changes from disease-related anatomical alterations, SNIPE obtained a classification accuracy of 93% es_ES
dc.description.sponsorship Data collection and sharing for this project were funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904). ADNI is funded by the National Insti- tute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: Abbott, AstraZeneca AB, Bayer Schering Pharma AG, Bristol-Myers Squibb, Eisai Global Clinical Development, Elan Corporation, Genentech, GE Healthcare, GlaxoSmithKline, Innogenetics, Johnson and Johnson, Eli Lilly and Co., Medpace, Inc., Merck and Co., Inc., Novartis AG, Pfizer Inc, F. Hoffman-La Roche, Schering-Plough, Synarc, Inc., as well as non-profit partners the Alzheimer's Association and Alzheimer's Drug Discovery Foundation, with participation from the U.S. Food and Drug Administration. Private sector contributions to ADNI are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer's Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of California, Los Angeles. This research was also supported by NIH grants P30AG010129, K01 AG030514, and the Dana Foundation. en_EN
dc.format.extent 12 es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof NeuroImage es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Hippocampus es_ES
dc.subject Hippocampus volume es_ES
dc.subject Hippocampus grading es_ES
dc.subject Patient's classification es_ES
dc.subject Nonlocal means estimator es_ES
dc.subject Alzheimer's disease es_ES
dc.subject Entorhinal cortex es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Simultaneous segmentation and grading of anatomical structures for patient's classification: application to Alzheimer's Disease es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1016/j.neuroimage.2011.10.080
dc.relation.projectID info:eu-repo/grantAgreement/CIHR//MOP-84360/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CIHR//Cda (CECR)-Gevas-OE016/CA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CIHR//MOP-111169/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//RD07%2F0067%2F2001/ES/RED TEMÁTICA DE INVESTIGACIÓN COOPERATIVA EN BIOMEDICINA COMPUTACIONAL/ / es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Aplicaciones de las Tecnologías de la Información - Institut Universitari d'Aplicacions de les Tecnologies de la Informació es_ES
dc.description.bibliographicCitation Coupé, P.; Eskildsen, SF.; Manjón Herrera, JV.; Fonov, VS.; Collins, DL.; Alzheimer's Dis Neuroimaging (2012). Simultaneous segmentation and grading of anatomical structures for patient's classification: application to Alzheimer's Disease. NeuroImage. 59(4):3736-3747. https://doi.org/10.1016/j.neuroimage.2011.10.080 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://www.sciencedirect.com/science/article/pii/S1053811911012444 es_ES
dc.description.upvformatpinicio 3736 es_ES
dc.description.upvformatpfin 3747 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 59 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 237115
dc.identifier.eissn 1095-9572
dc.identifier.pmid 22094645 en_EN
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Canadian Institutes of Health Research es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem