- -

Learning with con gurable operators and RL-based heuristics

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Learning with con gurable operators and RL-based heuristics

Show full item record

Martínez Plumed, F.; Ferri Ramírez, C.; Hernández Orallo, J.; Ramírez Quintana, MJ. (2013). Learning with con gurable operators and RL-based heuristics. En New Frontiers in Mining Complex Patterns. Springer Verlag (Germany). 7765:1-16. doi:10.1007/978-3-642-37382-4_1

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/37322

Files in this item

Item Metadata

Title: Learning with con gurable operators and RL-based heuristics
Author: Martínez Plumed, Fernando Ferri Ramírez, César Hernández Orallo, José Ramírez Quintana, María José
UPV Unit: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Issued date:
Abstract:
In this paper, we push forward the idea of machine learning systems for which the operators can be modi ed and netuned for each problem. This allows us to propose a learning paradigm where users can write (or adapt) ...[+]
Subjects: Machine learning operators , Complex data , Heuristics , Inducting programming , Reinforcement learning , Erlang
Copyrigths: Reserva de todos los derechos
ISBN: 978-3-642-37381-7
Source:
New Frontiers in Mining Complex Patterns. (issn: 0302-9743 )
DOI: 10.1007/978-3-642-37382-4_1
Publisher:
Springer Verlag (Germany)
Publisher version: http://dx.doi.org/10.1007/978-3-642-37382-4_1
Conference name: First International Workshop, NFMCP 2012 Held in Conjunction with ECML/PKDD 2012
Conference place: Bristol, UK
Conference date: September 24, 2012
Series: Lecture Notes in Computer Science;7765
Thanks:
This work was supported by the MEC projects CONSOLIDER-INGENIO 26706 and TIN 2010-21062-C02-02, GVA project PROMETEO/2008/051, and the REFRAME project granted by the European Coordinated Research on Long-term Challenges ...[+]
Type: Capítulo de libro

References

Armstrong, J.: A history of erlang. In: Proceedings of the Third ACM SIGPLAN Conf. on History of Programming Languages, HOPL III, pp. 1–26. ACM (2007)

Brazdil, P., Giraud-Carrier: Metalearning: Concepts and systems. In: Metalearning. Cognitive Technologies, pp. 1–10. Springer, Heidelberg (2009)

Daumé III, H., Langford, J.: Search-based structured prediction (2009) [+]
Armstrong, J.: A history of erlang. In: Proceedings of the Third ACM SIGPLAN Conf. on History of Programming Languages, HOPL III, pp. 1–26. ACM (2007)

Brazdil, P., Giraud-Carrier: Metalearning: Concepts and systems. In: Metalearning. Cognitive Technologies, pp. 1–10. Springer, Heidelberg (2009)

Daumé III, H., Langford, J.: Search-based structured prediction (2009)

Dietterich, T., Domingos, P., Getoor, L., Muggleton, S., Tadepalli, P.: Structured machine learning: the next ten years. Machine Learning 73, 3–23 (2008)

Dietterich, T.G., Lathrop, R., Lozano-Perez, T.: Solving the multiple-instance problem with axis-parallel rectangles. Artificial Intelligence 89, 31–71 (1997)

Džeroski, S.: Towards a general framework for data mining. In: Džeroski, S., Struyf, J. (eds.) KDID 2006. LNCS, vol. 4747, pp. 259–300. Springer, Heidelberg (2007)

Dzeroski, S., De Raedt, L., Driessens, K.: Relational reinforcement learning. Machine Learning 43, 7–52 (2001), 10.1023/A:1007694015589

Dzeroski, S., Lavrac, N. (eds.): Relational Data Mining. Springer (2001)

Estruch, V., Ferri, C., Hernández-Orallo, J., Ramírez-Quintana, M.J.: Similarity functions for structured data. an application to decision trees. Inteligencia Artificial, Revista Iberoamericana de Inteligencia Artificial 10(29), 109–121 (2006)

Estruch, V., Ferri, C., Hernández-Orallo, J., Ramírez-Quintana, M.J.: Web categorisation using distance-based decision trees. ENTCS 157(2), 35–40 (2006)

Estruch, V., Ferri, C., Hernández-Orallo, J., Ramírez-Quintana, M.J.: Bridging the Gap between Distance and Generalisation. Computational Intelligence (2012)

Ferri-Ramírez, C., Hernández-Orallo, J., Ramírez-Quintana, M.J.: Incremental learning of functional logic programs. In: Kuchen, H., Ueda, K. (eds.) FLOPS 2001. LNCS, vol. 2024, pp. 233–247. Springer, Heidelberg (2001)

Gärtner, T.: Kernels for Structured Data. PhD thesis, Universitat Bonn (2005)

Holland, J.H., Booker, L.B., Colombetti, M., Dorigo, M., Goldberg, D.E., Forrest, S., Riolo, R.L., Smith, R.E., Lanzi, P.L., Stolzmann, W., Wilson, S.W.: What is a learning classifier system? In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 1999. LNCS (LNAI), vol. 1813, pp. 3–32. Springer, Heidelberg (2000)

Holmes, J.H., Lanzi, P., Stolzmann, W.: Learning classifier systems: New models, successful applications. Information Processing Letters (2002)

Kitzelmann, E.: Inductive programming: A survey of program synthesis techniques. In: Schmid, U., Kitzelmann, E., Plasmeijer, R. (eds.) AAIP 2009. LNCS, vol. 5812, pp. 50–73. Springer, Heidelberg (2010)

Koller, D., Sahami, M.: Hierarchically classifying documents using very few words. In: Proceedings of the Fourteenth International Conference on Machine Learning, ICML 1997, pp. 170–178. Morgan Kaufmann Publishers Inc., San Francisco (1997)

Lafferty, J., McCallum, A.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: ICML 2001, pp. 282–289 (2001)

Lloyd, J.W.: Knowledge representation, computation, and learning in higher-order logic (2001)

Maes, F., Denoyer, L., Gallinari, P.: Structured prediction with reinforcement learning. Machine Learning Journal 77(2-3), 271–301 (2009)

Martínez-Plumed, F., Estruch, V., Ferri, C., Hernández-Orallo, J., Ramírez-Quintana, M.J.: Newton trees. In: Li, J. (ed.) AI 2010. LNCS, vol. 6464, pp. 174–183. Springer, Heidelberg (2010)

Muggleton, S.: Inverse entailment and Progol. New Generation Computing (1995)

Muggleton, S.H.: Inductive logic programming: Issues, results, and the challenge of learning language in logic. Artificial Intelligence 114(1-2), 283–296 (1999)

Plotkin, G.: A note on inductive generalization. Machine Intelligence 5 (1970)

Schmidhuber, J.: Optimal ordered problem solver. Maching Learning 54(3), 211–254 (2004)

Srinivasan, A.: The Aleph Manual (2004)

Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press (1998)

Tadepalli, P., Givan, R., Driessens, K.: Relational reinforcement learning: An overview. In: Proc. of the Workshop on Relational Reinforcement Learning (2004)

Tamaddoni-Nezhad, A., Muggleton, S.: A genetic algorithms approach to ILP. In: Matwin, S., Sammut, C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, pp. 285–300. Springer, Heidelberg (2003)

Tsochantaridis, I., Hofmann, T., Joachims, T., Altun, Y.: Support vector machine learning for interdependent and structured output spaces. In: ICML (2004)

Wallace, C.S., Dowe, D.L.: Refinements of MDL and MML coding. Comput. J. 42(4), 330–337 (1999)

Watkins, C., Dayan, P.: Q-learning. Machine Learning 8, 279–292 (1992)

[-]

This item appears in the following Collection(s)

Show full item record