- -

Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the year 2009

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


  • Estadisticas de Uso

Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the year 2009

Show full item record

Moragues Pons, ME.; Martínez Mañez, R.; Sancenón Galarza, F. (2011). Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the year 2009. Chemical Society Reviews. 40(5):2593-2643. doi:10.1039/c0cs00015a

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/37347

Files in this item

Item Metadata

Title: Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the year 2009
Author: Moragues Pons, María Esperanza Martínez Mañez, Ramón Sancenón Galarza, Félix
UPV Unit: Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
This critical review is focused on examples reported in the year 2009 dealing with the design of chromogenic and fluorogenic chemosensors or reagents for anions (264 references). © 2011 The Royal Society of Chemistry.
Subjects: Anions , Chromogenic substrate , Coordination compound , Fluorescent dye , Nanoparticle , Chromogenic Compounds , Coordination Complexes
Copyrigths: Reserva de todos los derechos
Chemical Society Reviews. (issn: 0306-0012 )
DOI: 10.1039/c0cs00015a
Royal Society of Chemistry
Publisher version: http://dx.doi.org/10.1039/c0cs00015a
Type: Artículo


Schmidtchen, F. P., Gleich, A., & Schummer, A. (1989). Selective molecular hosts for anions. Pure and Applied Chemistry, 61(9), 1535-1546. doi:10.1351/pac198961091535

Dietrich, B. (1993). Design of anion receptors: Applications. Pure and Applied Chemistry, 65(7), 1457-1464. doi:10.1351/pac199365071457

Atwood, J. L., Holman, K. T., & Steed, J. W. (1996). Laying traps for elusive prey: recent advances in the non-covalent binding of anions. Chemical Communications, (12), 1401. doi:10.1039/cc9960001401 [+]
Schmidtchen, F. P., Gleich, A., & Schummer, A. (1989). Selective molecular hosts for anions. Pure and Applied Chemistry, 61(9), 1535-1546. doi:10.1351/pac198961091535

Dietrich, B. (1993). Design of anion receptors: Applications. Pure and Applied Chemistry, 65(7), 1457-1464. doi:10.1351/pac199365071457

Atwood, J. L., Holman, K. T., & Steed, J. W. (1996). Laying traps for elusive prey: recent advances in the non-covalent binding of anions. Chemical Communications, (12), 1401. doi:10.1039/cc9960001401

Schmidtchen, F. P., & Berger, M. (1997). Artificial Organic Host Molecules for Anions. Chemical Reviews, 97(5), 1609-1646. doi:10.1021/cr9603845

Antonisse, M. M. G., & Reinhoudt, D. N. (1998). Neutral anion receptors: design and application. Chemical Communications, (4), 443-448. doi:10.1039/a707529d

Gale, P. (2000). Anion coordination and anion-directed assembly: highlights from 1997 and 1998. Coordination Chemistry Reviews, 199(1), 181-233. doi:10.1016/s0010-8545(99)00149-6

Gale, P. A. (2001). Anion receptor chemistry: highlights from 1999. Coordination Chemistry Reviews, 213(1), 79-128. doi:10.1016/s0010-8545(00)00364-7

Gale, P. A. (2003). Anion and ion-pair receptor chemistry: highlights from 2000 and 2001. Coordination Chemistry Reviews, 240(1-2), 191-221. doi:10.1016/s0010-8545(02)00258-8

Gale, P. A., & Quesada, R. (2006). Anion coordination and anion-templated assembly: Highlights from 2002 to 2004. Coordination Chemistry Reviews, 250(23-24), 3219-3244. doi:10.1016/j.ccr.2006.05.020

Gale, P. A., García-Garrido, S. E., & Garric, J. (2008). Anion receptors based on organic frameworks: highlights from 2005 and 2006. Chem. Soc. Rev., 37(1), 151-190. doi:10.1039/b715825d

Caltagirone, C., & Gale, P. A. (2009). Anion receptor chemistry: highlights from 2007. Chem. Soc. Rev., 38(2), 520-563. doi:10.1039/b806422a

Kubik, S. (2009). Amino acid containing anion receptors. Chem. Soc. Rev., 38(2), 585-605. doi:10.1039/b810531f

Schmidtchen, F. P. (2005). Artificial Host Molecules for the Sensing of Anions. Anion Sensing, 1-29. doi:10.1007/b101160

Schmidtchen, F. P. (2006). Reflections on the construction of anion receptors. Coordination Chemistry Reviews, 250(23-24), 2918-2928. doi:10.1016/j.ccr.2006.07.009

Gale, P. A. (2006). Structural and Molecular Recognition Studies with Acyclic Anion Receptors†. Accounts of Chemical Research, 39(7), 465-475. doi:10.1021/ar040237q

Sessler, J. L., Camiolo, S., & Gale, P. A. (2003). Pyrrolic and polypyrrolic anion binding agents. Coordination Chemistry Reviews, 240(1-2), 17-55. doi:10.1016/s0010-8545(03)00023-7

Bondy, C. R., & Loeb, S. J. (2003). Amide based receptors for anions. Coordination Chemistry Reviews, 240(1-2), 77-99. doi:10.1016/s0010-8545(02)00304-1

Choi, K., & Hamilton, A. D. (2003). Macrocyclic anion receptors based on directed hydrogen bonding interactions. Coordination Chemistry Reviews, 240(1-2), 101-110. doi:10.1016/s0010-8545(02)00305-3

Davis, A. P. (2006). Anion binding and transport by steroid-based receptors. Coordination Chemistry Reviews, 250(23-24), 2939-2951. doi:10.1016/j.ccr.2006.05.008

Best, M. D., Tobey, S. L., & Anslyn, E. V. (2003). Abiotic guanidinium containing receptors for anionic species. Coordination Chemistry Reviews, 240(1-2), 3-15. doi:10.1016/s0010-8545(02)00256-4

Llinares, J. M., Powell, D., & Bowman-James, K. (2003). Ammonium based anion receptors. Coordination Chemistry Reviews, 240(1-2), 57-75. doi:10.1016/s0010-8545(03)00019-5

Schug, K. A., & Lindner, W. (2005). Noncovalent Binding between Guanidinium and Anionic Groups:  Focus on Biological- and Synthetic-Based Arginine/Guanidinium Interactions with Phosph[on]ate and Sulf[on]ate Residues. Chemical Reviews, 105(1), 67-114. doi:10.1021/cr040603j

Yoon, J., Kim, S. K., Singh, N. J., & Kim, K. S. (2006). Imidazolium receptors for the recognition of anions. Chemical Society Reviews, 35(4), 355. doi:10.1039/b513733k

Blondeau, P., Segura, M., Pérez-Fernández, R., & de Mendoza, J. (2007). Molecular recognition of oxoanions based on guanidinium receptors. Chem. Soc. Rev., 36(2), 198-210. doi:10.1039/b603089k

Xu, Z., Kim, S. K., & Yoon, J. (2010). Revisit to imidazolium receptors for the recognition of anions: highlighted research during 2006–2009. Chemical Society Reviews, 39(5), 1457. doi:10.1039/b918937h

García-España, E., Díaz, P., Llinares, J. M., & Bianchi, A. (2006). Anion coordination chemistry in aqueous solution of polyammonium receptors. Coordination Chemistry Reviews, 250(23-24), 2952-2986. doi:10.1016/j.ccr.2006.05.018

Schmuck, C. (2006). How to improve guanidinium cations for oxoanion binding in aqueous solution? Coordination Chemistry Reviews, 250(23-24), 3053-3067. doi:10.1016/j.ccr.2006.04.001

Amendola, V. (2001). Anion recognition by dimetallic cryptates. Coordination Chemistry Reviews, 219-221, 821-837. doi:10.1016/s0010-8545(01)00368-x

Beer, P. D., & Hayes, E. J. (2003). Transition metal and organometallic anion complexation agents. Coordination Chemistry Reviews, 240(1-2), 167-189. doi:10.1016/s0010-8545(02)00303-x

Steed, J. W. (2009). Coordination and organometallic compounds as anion receptors and sensors. Chem. Soc. Rev., 38(2), 506-519. doi:10.1039/b810364j

O’Neil, E. J., & Smith, B. D. (2006). Anion recognition using dimetallic coordination complexes. Coordination Chemistry Reviews, 250(23-24), 3068-3080. doi:10.1016/j.ccr.2006.04.006

Rice, C. R. (2006). Metal-assembled anion receptors. Coordination Chemistry Reviews, 250(23-24), 3190-3199. doi:10.1016/j.ccr.2006.05.017

Amendola, V., & Fabbrizzi, L. (2009). Anion receptors that contain metals as structural units. Chem. Commun., (5), 513-531. doi:10.1039/b808264m

Martínez-Máñez, R., & Sancenón, F. (2003). Fluorogenic and Chromogenic Chemosensors and Reagents for Anions. Chemical Reviews, 103(11), 4419-4476. doi:10.1021/cr010421e

Katayev, E. A., Ustynyuk, Y. A., & Sessler, J. L. (2006). Receptors for tetrahedral oxyanions. Coordination Chemistry Reviews, 250(23-24), 3004-3037. doi:10.1016/j.ccr.2006.04.013

Suksai, C., & Tuntulani, T. (2003). Chromogenic anion sensors. Chemical Society Reviews, 32(4), 192. doi:10.1039/b209598j

Kim, S. K., Lee, D. H., Hong, J.-I., & Yoon, J. (2009). Chemosensors for Pyrophosphate. Accounts of Chemical Research, 42(1), 23-31. doi:10.1021/ar800003f

Beer, P. (2000). Electrochemical and optical sensing of anions by transition metal based receptors. Coordination Chemistry Reviews, 205(1), 131-155. doi:10.1016/s0010-8545(00)00237-x

Beer, P. D. (1996). Anion selective recognition and optical/electrochemical sensing by novel transition-metal receptor systems. Chemical Communications, (6), 689. doi:10.1039/cc9960000689

De Silva, A. P., Gunaratne, H. Q. N., Gunnlaugsson, T., Huxley, A. J. M., McCoy, C. P., Rademacher, J. T., & Rice, T. E. (1997). Signaling Recognition Events with Fluorescent Sensors and Switches. Chemical Reviews, 97(5), 1515-1566. doi:10.1021/cr960386p

Gunnlaugsson, T., Glynn, M., Tocci (née Hussey), G. M., Kruger, P. E., & Pfeffer, F. M. (2006). Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors. Coordination Chemistry Reviews, 250(23-24), 3094-3117. doi:10.1016/j.ccr.2006.08.017

Amendola, V., Esteban-Gómez, D., Fabbrizzi, L., & Licchelli, M. (2006). What Anions Do to N−H-Containing Receptors. Accounts of Chemical Research, 39(5), 343-353. doi:10.1021/ar050195l

Gunnlaugsson, T., Ali, H. D. P., Glynn, M., Kruger, P. E., Hussey, G. M., Pfeffer, F. M., … Tierney, J. (2005). Fluorescent Photoinduced Electron Transfer (PET) Sensors for Anions; From Design to Potential Application. Journal of Fluorescence, 15(3), 287-299. doi:10.1007/s10895-005-2627-y

Wiskur, S. L., Ait-Haddou, H., Lavigne, J. J., & Anslyn, E. V. (2001). Teaching Old Indicators New Tricks. Accounts of Chemical Research, 34(12), 963-972. doi:10.1021/ar9600796

Nguyen, B. T., & Anslyn, E. V. (2006). Indicator–displacement assays. Coordination Chemistry Reviews, 250(23-24), 3118-3127. doi:10.1016/j.ccr.2006.04.009

Xu, Z., Chen, X., Kim, H. N., & Yoon, J. (2010). Sensors for the optical detection ofcyanide ion. Chem. Soc. Rev., 39(1), 127-137. doi:10.1039/b907368j

Martínez-Máñez, R., & Sancenón, F. (2005). New Advances in Fluorogenic Anion Chemosensors. Journal of Fluorescence, 15(3), 267-285. doi:10.1007/s10895-005-2626-z

Hijji, Y. M., Barare, B., Kennedy, A. P., & Butcher, R. (2009). Synthesis and photophysical characterization of a Schiff base as anion sensor. Sensors and Actuators B: Chemical, 136(2), 297-302. doi:10.1016/j.snb.2008.11.045

Zhang, Y.-M., Lin, Q., Wei, T.-B., Wang, D.-D., Yao, H., & Wang, Y.-L. (2009). Simple colorimetric sensors with high selectivity for acetate and chloride in aqueous solution. Sensors and Actuators B: Chemical, 137(2), 447-455. doi:10.1016/j.snb.2009.01.015

Anzenbacher, P., Nishiyabu, R., & Palacios, M. A. (2006). N-confused calix[4]pyrroles. Coordination Chemistry Reviews, 250(23-24), 2929-2938. doi:10.1016/j.ccr.2006.09.001

Anzenbacher,, P., Try, A. C., Miyaji, H., Jursíková, K., Lynch, V. M., Marquez, M., & Sessler, J. L. (2000). Fluorinated Calix[4]pyrrole and Dipyrrolylquinoxaline:  Neutral Anion Receptors with Augmented Affinities and Enhanced Selectivities. Journal of the American Chemical Society, 122(42), 10268-10272. doi:10.1021/ja002112w

Black, C. B., Andrioletti, B., Try, A. C., Ruiperez, C., & Sessler, J. L. (1999). Dipyrrolylquinoxalines:  Efficient Sensors for Fluoride Anion in Organic Solution. Journal of the American Chemical Society, 121(44), 10438-10439. doi:10.1021/ja992579a

Mizuno, T., Wei, W.-H., Eller, L. R., & Sessler, J. L. (2002). Phenanthroline Complexes Bearing Fused Dipyrrolylquinoxaline Anion Recognition Sites:  Efficient Fluoride Anion Receptors. Journal of the American Chemical Society, 124(7), 1134-1135. doi:10.1021/ja017298t

Maeda, H., & Kusunose, Y. (2005). Dipyrrolyldiketone Difluoroboron Complexes: Novel Anion Sensors With C-H⋅⋅⋅X− Interactions. Chemistry - A European Journal, 11(19), 5661-5666. doi:10.1002/chem.200500627

Ghosh, T., Maiya, B. G., & Samanta, A. (2006). A colorimetric chemosensor for both fluoride and transition metal ions based on dipyrrolyl derivative. Dalton Transactions, (6), 795. doi:10.1039/b510469f

Aldakov, D., & Anzenbacher, P. (2004). Sensing of Aqueous Phosphates by Polymers with Dual Modes of Signal Transduction. Journal of the American Chemical Society, 126(15), 4752-4753. doi:10.1021/ja039934o

Sessler, J. L., Cho, D.-G., & Lynch, V. (2006). Diindolylquinoxalines:  Effective Indole-Based Receptors for Phosphate Anion. Journal of the American Chemical Society, 128(51), 16518-16519. doi:10.1021/ja067720b

Chauhan, S. M. S., Bisht, T., & Garg, B. (2009). 1-Arylazo-5,5-dimethyl dipyrromethanes: Versatile chromogenic probes for anions. Sensors and Actuators B: Chemical, 141(1), 116-123. doi:10.1016/j.snb.2009.06.013

Liu, W.-X., Yang, R., Li, A.-F., Li, Z., Gao, Y.-F., Luo, X.-X., … Jiang, Y.-B. (2009). N-(Acetamido)thiourea based simple neutral hydrogen-bonding receptors for anions. Organic & Biomolecular Chemistry, 7(19), 4021. doi:10.1039/b910255h

Babu, J. N., Bhalla, V., Kumar, M., Puri, R. K., & Mahajan, R. K. (2009). Chloride ion recognition using thiourea/urea based receptors incorporated into 1,3-disubstituted calix[4]arenes. New Journal of Chemistry, 33(3), 675. doi:10.1039/b816610b

Boiocchi, M., Fabbrizzi, L., Garolfi, M., Licchelli, M., Mosca, L., & Zanini, C. (2009). Templated Synthesis of Copper(II) Azacyclam Complexes Using Urea as a Locking Fragment and Their Metal-Enhanced Binding Tendencies towards Anions. Chemistry - A European Journal, 15(42), 11288-11297. doi:10.1002/chem.200901364

Lin, Y.-S., Tu, G.-M., Lin, C.-Y., Chang, Y.-T., & Yen, Y.-P. (2009). Colorimetric anion chemosensors based on anthraquinone: naked-eye detection of isomeric dicarboxylate and tricarboxylate anions. New Journal of Chemistry, 33(4), 860. doi:10.1039/b811172c

Qing, G.-Y., Sun, T.-L., Wang, F., He, Y.-B., & Yang, X. (2009). Chromogenic Chemosensors forN-Acetylaspartate Based on Chiral Ferrocene-Bearing Thiourea Derivatives. European Journal of Organic Chemistry, 2009(6), 841-849. doi:10.1002/ejoc.200800961

Lu, Q.-S., Dong, L., Zhang, J., Li, J., Jiang, L., Huang, Y., … Yu, X.-Q. (2009). Imidazolium-Functionalized BINOL as a Multifunctional Receptor for Chromogenic and Chiral Anion Recognition. Organic Letters, 11(3), 669-672. doi:10.1021/ol8027303

Bao, X., Yu, J., & Zhou, Y. (2009). Selective colorimetric sensing for F− by a cleft-shaped anion receptor containing amide and hydroxyl as recognition units. Sensors and Actuators B: Chemical, 140(2), 467-472. doi:10.1016/j.snb.2009.04.056

Bhardwaj, V. K., Hundal, M. S., & Hundal, G. (2009). A tripodal receptor bearing catechol groups for the chromogenic sensing of F− ions via frozen proton transfer. Tetrahedron, 65(41), 8556-8562. doi:10.1016/j.tet.2009.08.023

Caltagirone, C., Mulas, A., Isaia, F., Lippolis, V., Gale, P. A., & Light, M. E. (2009). Metal-induced pre-organisation for anion recognition in a neutral platinum-containing receptor. Chemical Communications, (41), 6279. doi:10.1039/b912942a

Shiraishi, Y., Maehara, H., Sugii, T., Wang, D., & Hirai, T. (2009). A BODIPY–indole conjugate as a colorimetric and fluorometric probe for selective fluoride anion detection. Tetrahedron Letters, 50(29), 4293-4296. doi:10.1016/j.tetlet.2009.05.018

Shiraishi, Y., Maehara, H., & Hirai, T. (2009). Indole-azadiene conjugate as a colorimetric and fluorometric probe for selective fluoride ion sensing. Organic & Biomolecular Chemistry, 7(10), 2072. doi:10.1039/b821466b

Bhosale, S. V., Bhosale, S. V., Kalyankar, M. B., & Langford, S. J. (2009). A Core-Substituted Naphthalene Diimide Fluoride Sensor. Organic Letters, 11(23), 5418-5421. doi:10.1021/ol9022722

Lin, Z., Chen, H. C., Sun, S.-S., Hsu, C.-P., & Chow, T. J. (2009). Bifunctional maleimide dyes as selective anion sensors. Tetrahedron, 65(27), 5216-5221. doi:10.1016/j.tet.2009.04.090

Yoo, J., Kim, M.-S., Hong, S.-J., Sessler, J. L., & Lee, C.-H. (2009). Selective Sensing of Anions with Calix[4]pyrroles Strapped with Chromogenic Dipyrrolylquinoxalines. The Journal of Organic Chemistry, 74(3), 1065-1069. doi:10.1021/jo802059c

Shang, X.-F., Li, J., Lin, H., Jiang, P., Cai, Z.-S., & Lin, H.-K. (2009). Anion recognition and sensing of ruthenium(ii) and cobalt(ii) sulfonamido complexes. Dalton Transactions, (12), 2096. doi:10.1039/b804445g

Dydio, P., Zieliński, T., & Jurczak, J. (2009). Bishydrazide Derivatives of Isoindoline as Simple Anion Receptors. The Journal of Organic Chemistry, 74(4), 1525-1530. doi:10.1021/jo802288u

Zimmermann-Dimer, L. M., Reis, D. C., Machado, C., & Machado, V. G. (2009). Chromogenic anionic chemosensors based on protonated merocyanine solvatochromic dyes in trichloromethane and in trichloromethane–water biphasic system. Tetrahedron, 65(21), 4239-4248. doi:10.1016/j.tet.2009.03.049

Goswami, S., Hazra, A., Chakrabarty, R., & Fun, H.-K. (2009). Recognition of Carboxylate Anions and Carboxylic Acids by Selenium-Based New Chromogenic Fluorescent Sensor: A Remarkable Fluorescence Enhancement of Hindered Carboxylates. Organic Letters, 11(19), 4350-4353. doi:10.1021/ol901737s

Barnard, A., Dickson, S. J., Paterson, M. J., Todd, A. M., & Steed, J. W. (2009). Enantioselective lactate binding by chiral tripodal anion hosts derived from amino acids. Organic & Biomolecular Chemistry, 7(8), 1554. doi:10.1039/b817889e

Hung, C.-Y., Singh, A. S., Chen, C.-W., Wen, Y.-S., & Sun, S.-S. (2009). Colorimetric and luminescent sensing of F− anion through strong anion–π interaction inside the π-acidic cavity of a pyridyl-triazine bridged trinuclear Re(i)–tricarbonyl diimine complex. Chemical Communications, (12), 1511. doi:10.1039/b820234f

Metzger, A., & Anslyn, E. V. (1998). A Chemosensor for Citrate in Beverages. Angewandte Chemie International Edition, 37(5), 649-652. doi:10.1002/(sici)1521-3773(19980316)37:5<649::aid-anie649>3.0.co;2-h

Niikura, K., Metzger, A., & Anslyn, E. V. (1998). Chemosensor Ensemble with Selectivity for Inositol-Trisphosphate. Journal of the American Chemical Society, 120(33), 8533-8534. doi:10.1021/ja980990c

Aït-Haddou, H., Wiskur, S. L., Lynch, V. M., & Anslyn, E. V. (2001). Achieving Large Color Changes in Response to the Presence of Amino Acids:  A Molecular Sensing Ensemble with Selectivity for Aspartate. Journal of the American Chemical Society, 123(45), 11296-11297. doi:10.1021/ja011905v

Wiskur, S. L., & Anslyn, E. V. (2001). Using a Synthetic Receptor to Create an Optical-Sensing Ensemble for a Class of Analytes:  A Colorimetric Assay for the Aging of Scotch. Journal of the American Chemical Society, 123(41), 10109-10110. doi:10.1021/ja011800s

Zhong, Z., & Anslyn, E. V. (2002). A Colorimetric Sensing Ensemble for Heparin. Journal of the American Chemical Society, 124(31), 9014-9015. doi:10.1021/ja020505k

Lavigne, J. J., & Anslyn, E. V. (1999). Teaching Old Indicators New Tricks: A Colorimetric Chemosensing Ensemble for Tartrate/Malate in Beverages. Angewandte Chemie International Edition, 38(24), 3666-3669. doi:10.1002/(sici)1521-3773(19991216)38:24<3666::aid-anie3666>3.0.co;2-e

Wiskur, S. L., Floriano, P. N., Anslyn, E. V., & McDevitt, J. T. (2003). A Multicomponent Sensing Ensemble in Solution: Differentiation between Structurally Similar Analytes. Angewandte Chemie International Edition, 42(18), 2070-2072. doi:10.1002/anie.200351058

Fabbrizzi, L., Marcotte, N., Stomeo, F., & Taglietti, A. (2002). Pyrophosphate Detection in Water by Fluorescence Competition Assays: Inducing Selectivity through the Choice of the Indicator. Angewandte Chemie International Edition, 41(20), 3811-3814. doi:10.1002/1521-3773(20021018)41:20<3811::aid-anie3811>3.0.co;2-w

Hortalá, M. A., Fabbrizzi, L., Marcotte, N., Stomeo, F., & Taglietti, A. (2003). Designing the Selectivity of the Fluorescent Detection of Amino Acids:  A Chemosensing Ensemble for Histidine. Journal of the American Chemical Society, 125(1), 20-21. doi:10.1021/ja027110l

Fabbrizzi, L., Leone, A., & Taglietti, A. (2001). A Chemosensing Ensemble for Selective Carbonate Detection in Water Based on Metal-Ligand Interactions. Angewandte Chemie International Edition, 40(16), 3066-3069. doi:10.1002/1521-3773(20010817)40:16<3066::aid-anie3066>3.0.co;2-0

Kim, S. Y., & Hong, J.-I. (2009). Dual signal (color change and fluorescence ON–OFF) ensemble system based on bis(Dpa-CuII) complex for detection of PPi in water. Tetrahedron Letters, 50(17), 1951-1953. doi:10.1016/j.tetlet.2009.02.036

Khatua, S., Kim, K., Kang, J., Huh, J. O., Hong, C. S., & Churchill, D. G. (2009). Synthesis, Structure, Magnetic Properties and Aqueous Optical Citrate Detection of Chiral Dinuclear CuIIComplexes. European Journal of Inorganic Chemistry, 2009(22), 3266-3274. doi:10.1002/ejic.200900357

Wright, A. T., & Anslyn, E. V. (2006). Differential receptor arrays and assays for solution-based molecular recognition. Chem. Soc. Rev., 35(1), 14-28. doi:10.1039/b505518k

Kitamura, M., Shabbir, S. H., & Anslyn, E. V. (2009). Guidelines for Pattern Recognition Using Differential Receptors and Indicator Displacement Assays. The Journal of Organic Chemistry, 74(12), 4479-4489. doi:10.1021/jo900433j

Zhang, T., Edwards, N. Y., Bonizzoni, M., & Anslyn, E. V. (2009). The Use of Differential Receptors to Pattern Peptide Phosphorylation. Journal of the American Chemical Society, 131(33), 11976-11984. doi:10.1021/ja9041675

Zhang, D. (2009). Highly selective colorimetric detection of cysteine and homocysteine in water through a direct displacement approach. Inorganic Chemistry Communications, 12(12), 1255-1258. doi:10.1016/j.inoche.2009.09.035

Li, S., Zhou, Y., Yu, C., Chen, F., & Xu, J. (2009). Switching the ligand-exchange reactivities of chloro-bridged cyclopalladated azobenzenes for the colorimetric sensing of thiocyanate. New Journal of Chemistry, 33(7), 1462. doi:10.1039/b903752g

Männel-Croisé, C., & Zelder, F. (2009). Side Chains of Cobalt Corrinoids Control the Sensitivity and Selectivity in the Colorimetric Detection of Cyanide. Inorganic Chemistry, 48(4), 1272-1274. doi:10.1021/ic900053h

Mullen, K. M., Davis, J. J., & Beer, P. D. (2009). Anion induced displacement studies in naphthalene diimide containing interpenetrated and interlocked structures. New Journal of Chemistry, 33(4), 769. doi:10.1039/b819322c

Sancenón, F., Martínez-Máñez, R., Miranda, M. A., Seguí, M.-J., & Soto, J. (2003). Towards the Development of Colorimetric Probes to Discriminate between Isomeric Dicarboxylates. Angewandte Chemie International Edition, 42(6), 647-650. doi:10.1002/anie.200390178

Jiménez, D., Martínez-Máñez, R., Sancenón, F., Ros-Lis, J. V., Benito, A., & Soto, J. (2003). A New Chromo-chemodosimeter Selective for Sulfide Anion. Journal of the American Chemical Society, 125(30), 9000-9001. doi:10.1021/ja0347336

Solé, S., & Gabbaï, F. P. (2004). A bidentate borane as colorimetric fluoride ion sensor. Chem. Commun., (11), 1284-1285. doi:10.1039/b403596h

Wang, W., Escobedo, J. O., Lawrence, C. M., & Strongin, R. M. (2004). Direct Detection of Homocysteine. Journal of the American Chemical Society, 126(11), 3400-3401. doi:10.1021/ja0318838

Zhang, M., Yu, M., Li, F., Zhu, M., Li, M., Gao, Y., … Huang, C. (2007). A Highly Selective Fluorescence Turn-on Sensor for Cysteine/Homocysteine and Its Application in Bioimaging. Journal of the American Chemical Society, 129(34), 10322-10323. doi:10.1021/ja073140i

Cho, D.-G., Kim, J. H., & Sessler, J. L. (2008). The Benzil−Cyanide Reaction and Its Application to the Development of a Selective Cyanide Anion Indicator. Journal of the American Chemical Society, 130(36), 12163-12167. doi:10.1021/ja8039025

Ros-Lis, J. V., Martínez-Máñez, R., & Soto, J. (2002). A selective chromogenic reagent for cyanide determination. Chem. Commun., (19), 2248-2249. doi:10.1039/b206500b

Wang, S.-P., Deng, W.-J., Sun, D., Yan, M., Zheng, H., & Xu, J.-G. (2009). A colorimetric and fluorescent merocyanine-based probe for biological thiols. Organic & Biomolecular Chemistry, 7(19), 4017. doi:10.1039/b909760k

Huo, F.-J., Sun, Y.-Q., Su, J., Chao, J.-B., Zhi, H.-J., & Yin, C.-X. (2009). Colorimetric Detection of Thiols Using a Chromene Molecule. Organic Letters, 11(21), 4918-4921. doi:10.1021/ol901951h

Kim, G.-J., & Kim, H.-J. (2010). Doubly activated coumarin as a colorimetric and fluorescent chemodosimeter for cyanide. Tetrahedron Letters, 51(1), 185-187. doi:10.1016/j.tetlet.2009.10.113

Yang, Y.-K., & Tae, J. (2006). Acridinium Salt Based Fluorescent and Colorimetric Chemosensor for the Detection of Cyanide in Water. Organic Letters, 8(25), 5721-5723. doi:10.1021/ol062323r

Ekmekci, Z., Yilmaz, M. D., & Akkaya, E. U. (2008). A Monostyryl-boradiazaindacene (BODIPY) Derivative as Colorimetric and Fluorescent Probe for Cyanide Ions. Organic Letters, 10(3), 461-464. doi:10.1021/ol702823u

Tomasulo, M., & Raymo, F. M. (2005). Colorimetric Detection of Cyanide with a Chromogenic Oxazine. Organic Letters, 7(21), 4633-4636. doi:10.1021/ol051750m

Hudnall, T. W., & Gabbaï, F. P. (2007). Ammonium Boranes for the Selective Complexation of Cyanide or Fluoride Ions in Water. Journal of the American Chemical Society, 129(39), 11978-11986. doi:10.1021/ja073793z

Gimeno, N., Li, X., Durrant, J. R., & Vilar, R. (2008). Cyanide Sensing with Organic Dyes: Studies in Solution and on Nanostructured Al2O3 Surfaces. Chemistry - A European Journal, 14(10), 3006-3012. doi:10.1002/chem.200700412

Ros-Lis, J. V., Martínez-Máñez, R., & Soto, J. (2005). Subphthalocyanines as fluoro-chromogenic probes for anions and their application to the highly selective and sensitive cyanide detection. Chemical Communications, (42), 5260. doi:10.1039/b510710e

Lou, X., Zhang, L., Qin, J., & Li, Z. (2008). An alternative approach to develop a highly sensitive and selective chemosensor for the colorimetric sensing of cyanide in water. Chemical Communications, (44), 5848. doi:10.1039/b812746h

Shiraishi, Y., Adachi, K., Itoh, M., & Hirai, T. (2009). Spiropyran as a Selective, Sensitive, and Reproducible Cyanide Anion Receptor. Organic Letters, 11(15), 3482-3485. doi:10.1021/ol901399a

Sun, Y., Wang, G., & Guo, W. (2009). Colorimetric detection of cyanide with N-nitrophenyl benzamide derivatives. Tetrahedron, 65(17), 3480-3485. doi:10.1016/j.tet.2009.02.023

Kumar, S., & Kumar, S. (2009). 1-(4-Nitrophenyl)-benzimidazolium-based ratiometric chromogenic probes for cyanide ion. Tetrahedron Letters, 50(31), 4463-4466. doi:10.1016/j.tetlet.2009.05.047

Ábalos, T., Royo, S., Martínez-Máñez, R., Sancenón, F., Soto, J., Costero, A. M., … Parra, M. (2009). Surfactant-assisted chromogenic sensing of cyanide in water. New Journal of Chemistry, 33(8), 1641. doi:10.1039/b909705h

Hong, S.-J., Yoo, J., Kim, S.-H., Kim, J. S., Yoon, J., & Lee, C.-H. (2009). β-Vinyl substituted calix[4]pyrrole as a selective ratiometric sensor for cyanide anion. Chem. Commun., (2), 189-191. doi:10.1039/b815326d

Kaur, P., Sareen, D., Kaur, S., & Singh, K. (2009). An efficacious «naked-eye» selective sensing of cyanide from aqueous solutions using a triarylmethane leuconitrile. Inorganic Chemistry Communications, 12(3), 272-275. doi:10.1016/j.inoche.2008.12.025

Niu, H.-T., Jiang, X., He, J., & Cheng, J.-P. (2009). Cyanine dye-based chromofluorescent probe for highly sensitive and selective detection of cyanide in water. Tetrahedron Letters, 50(48), 6668-6671. doi:10.1016/j.tetlet.2009.09.079

Qian, G., Li, X., & Wang, Z. Y. (2009). Visible and near-infrared chemosensor for colorimetric and ratiometric detection of cyanide. J. Mater. Chem., 19(4), 522-530. doi:10.1039/b813478b

Hudnall, T. W., Chiu, C.-W., & Gabbaï, F. P. (2009). Fluoride Ion Recognition by Chelating and Cationic Boranes. Accounts of Chemical Research, 42(2), 388-397. doi:10.1021/ar8001816

Wade, C. R., & Gabbaï, F. P. (2009). Colorimetric turn-on sensing of fluoride ions in H2O/CHCl3 mixtures by pyridinium boranes. Dalton Transactions, (42), 9169. doi:10.1039/b913030f

Kim, Y., & Gabbaï, F. P. (2009). Cationic Boranes for the Complexation of Fluoride Ions in Water below the 4 ppm Maximum Contaminant Level. Journal of the American Chemical Society, 131(9), 3363-3369. doi:10.1021/ja8091467

Lam, S.-T., Zhu, N., & Yam, V. W.-W. (2009). Synthesis and Characterization of Luminescent Rhenium(I) Tricarbonyl Diimine Complexes with a Triarylboron Moiety and the Study of Their Fluoride Ion-Binding Properties. Inorganic Chemistry, 48(20), 9664-9670. doi:10.1021/ic900803a

Wang, J., Liu, H.-B., Wang, W., Kim, I., & Ha, C.-S. (2009). A thiazoline-containing cobalt(II) complex based colorimetric fluorescent probe: «turn-on» detection of fluoride. Dalton Transactions, (47), 10422. doi:10.1039/b918887h

Kim, D.-S., Chung, Y.-M., Jun, M., & Ahn, K. H. (2009). Selective Colorimetric Sensing of Anions in Aqueous Media through Reversible Covalent Bonding. The Journal of Organic Chemistry, 74(13), 4849-4854. doi:10.1021/jo900573v

Descalzo, A. B., Martínez-Máñez, R., Sancenón, F., Hoffmann, K., & Rurack, K. (2006). The Supramolecular Chemistry of Organic–Inorganic Hybrid Materials. Angewandte Chemie International Edition, 45(36), 5924-5948. doi:10.1002/anie.200600734

Martínez-Máñez, R., & Sancenón, F. (2006). Chemodosimeters and 3D inorganic functionalised hosts for the fluoro-chromogenic sensing of anions. Coordination Chemistry Reviews, 250(23-24), 3081-3093. doi:10.1016/j.ccr.2006.04.016

Comes, M., Rodríguez-López, G., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Beltrán, D. (2005). Host Solids Containing Nanoscale Anion-Binding Pockets and Their Use in Selective Sensing Displacement Assays. Angewandte Chemie International Edition, 44(19), 2918-2922. doi:10.1002/anie.200461511

Descalzo, A. B., Marcos, M. D., Martínez-Máñez, R., Soto, J., Beltrán, D., & Amorós, P. (2005). Anthrylmethylamine functionalised mesoporous silica-based materials as hybrid fluorescent chemosensors for ATP. Journal of Materials Chemistry, 15(27-28), 2721. doi:10.1039/b501609f

Coll, C., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., & Soto, J. (2007). A Simple Approach for the Selective and Sensitive Colorimetric Detection of Anionic Surfactants in Water. Angewandte Chemie International Edition, 46(10), 1675-1678. doi:10.1002/anie.200603800

Descalzo, A. B., Rurack, K., Weisshoff, H., Martínez-Máñez, R., Marcos, M. D., Amorós, P., … Soto, J. (2005). Rational Design of a Chromo- and Fluorogenic Hybrid Chemosensor Material for the Detection of Long-Chain Carboxylates. Journal of the American Chemical Society, 127(1), 184-200. doi:10.1021/ja045683n

Calero, P., Aznar, E., Lloris, J. M., Marcos, M. D., Martínez-Máñez, R., Ros-Lis, J. V., … Sancenón, F. (2008). Chromogenic silica nanoparticles for the colorimetric sensing of long-chain carboxylates. Chemical Communications, (14), 1668. doi:10.1039/b718690h

Comes, M., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., Villaescusa, L. A., & Amorós, P. (2008). Hybrid materials with nanoscopic anion-binding pockets for the colorimetric sensing of phosphate in water using displacement assays. Chemical Communications, (31), 3639. doi:10.1039/b804396e

Climent, E., Casasús, R., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., & Soto, J. (2008). Chromo-fluorogenic sensing of pyrophosphate in aqueous media using silica functionalised with binding and reactive units. Chemical Communications, (48), 6531. doi:10.1039/b813199f

Daniel, M.-C., Ruiz, J., Nlate, S., Palumbo, J., Astruc, D., & Blais, J.-C. (2001). Gold nanoparticles containing redox-active supramolecular dendrons that recognize H2PO4–. Chemical Communications, (19), 2000-2001. doi:10.1039/b106805a

Beer, P. D., Cormode, D. P., & Davis, J. J. (2004). Zinc metalloporphyrin-functionalised nanoparticle anion sensorsElectronic supplementary information (ESI) available: synthetic procedure for 1 and 2, titration experimental protocol and nanoparticle TEM. See http://www.rsc.org/suppdata/cc/b3/b313658b/. Chemical Communications, (4), 414. doi:10.1039/b313658b

Daniel, M.-C., Ruiz, J., Nlate, S., Blais, J.-C., & Astruc, D. (2003). Nanoscopic Assemblies between Supramolecular Redox Active Metallodendrons and Gold Nanoparticles:  Synthesis, Characterization, and Selective Recognition of H2PO4-, HSO4-, and Adenosine-5‘-Triphosphate (ATP2-) Anions. Journal of the American Chemical Society, 125(9), 2617-2628. doi:10.1021/ja021325d

Comes, M., Aznar, E., Moragues, M., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Amorós, P. (2009). Mesoporous Hybrid Materials Containing Nanoscopic «Binding Pockets» for Colorimetric Anion Signaling in Water by using Displacement Assays. Chemistry - A European Journal, 15(36), 9024-9033. doi:10.1002/chem.200900890

Yao, Z., Feng, X., Li, C., & Shi, G. (2009). Conjugated polyelectrolyte as a colorimetric and fluorescent probe for the detection of glutathione. Chemical Communications, (39), 5886. doi:10.1039/b912811e

(s. f.). doi:10.1021/cr030698

Rosi, N. L., & Mirkin, C. A. (2005). Nanostructures in Biodiagnostics. Chemical Reviews, 105(4), 1547-1562. doi:10.1021/cr030067f

Katz, E., & Willner, I. (2004). Integrated Nanoparticle-Biomolecule Hybrid Systems: Synthesis, Properties, and Applications. Angewandte Chemie International Edition, 43(45), 6042-6108. doi:10.1002/anie.200400651

Patel, G., & Menon, S. (2009). Recognition of lysine, arginine and histidine by novel p-sulfonatocalix[4]arene thiol functionalized gold nanoparticles in aqueous solution. Chemical Communications, (24), 3563. doi:10.1039/b905141d

Daniel, W. L., Han, M. S., Lee, J.-S., & Mirkin, C. A. (2009). Colorimetric Nitrite and Nitrate Detection with Gold Nanoparticle Probes and Kinetic End Points. Journal of the American Chemical Society, 131(18), 6362-6363. doi:10.1021/ja901609k

Climent, E., Calero, P., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., & Soto, J. (2009). Selective Chromofluorogenic Sensing of Heparin by using Functionalised Silica Nanoparticles Containing Binding Sites and a Signalling Reporter. Chemistry - A European Journal, 15(8), 1816-1820. doi:10.1002/chem.200802074

Ros-Lis, J. V., García, B., Jiménez, D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Valldecabres, M. C. (2004). Squaraines as Fluoro−Chromogenic Probes for Thiol-Containing Compounds and Their Application to the Detection of Biorelevant Thiols. Journal of the American Chemical Society, 126(13), 4064-4065. doi:10.1021/ja031987i

Climent, E., Casasús, R., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., & Soto, J. (2009). Colorimetric sensing of pyrophosphate in aqueous media using bis-functionalised silica surfaces. Dalton Transactions, (24), 4806. doi:10.1039/b902099c

Aznar, E., Martínez-Máñez, R., & Sancenón, F. (2009). Controlled release using mesoporous materials containing gate-like scaffoldings. Expert Opinion on Drug Delivery, 6(6), 643-655. doi:10.1517/17425240902895980

Casasús, R., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., & Amorós, P. (2006). New Methods for Anion Recognition and Signaling Using Nanoscopic Gatelike Scaffoldings. Angewandte Chemie International Edition, 45(40), 6661-6664. doi:10.1002/anie.200602045

Coll, C., Casasús, R., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Amorós, P. (2007). Nanoscopic hybrid systems with a polarity-controlled gate-like scaffolding for the colorimetric signalling of long-chain carboxylates. Chem. Commun., (19), 1957-1959. doi:10.1039/b617703d

Climent, E., Bernardos, A., Martínez-Máñez, R., Maquieira, A., Marcos, M. D., Pastor-Navarro, N., … Amorós, P. (2009). Controlled Delivery Systems Using Antibody-Capped Mesoporous Nanocontainers. Journal of the American Chemical Society, 131(39), 14075-14080. doi:10.1021/ja904456d

Climent, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., Rurack, K., & Amorós, P. (2009). The Determination of Methylmercury in Real Samples Using Organically Capped Mesoporous Inorganic Materials Capable of Signal Amplification. Angewandte Chemie International Edition, 48(45), 8519-8522. doi:10.1002/anie.200904243

Aznar, E., Coll, C., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Ruiz, E. (2009). Borate-Driven Gatelike Scaffolding Using Mesoporous Materials Functionalised with Saccharides. Chemistry - A European Journal, 15(28), 6877-6888. doi:10.1002/chem.200900090

Jose, D. A., Stadlbauer, S., & König, B. (2009). Polydiacetylene-Based Colorimetric Self-Assembled Vesicular Receptors for Biological Phosphate Ion Recognition. Chemistry - A European Journal, 15(30), 7404-7412. doi:10.1002/chem.200900339

Ghosh, K., Sarkar, A. R., & Patra, A. (2009). Pyridinium amide-based simple synthetic receptor for selective recognition of dihydrogenphosphate. Tetrahedron Letters, 50(47), 6557-6561. doi:10.1016/j.tetlet.2009.09.043

Hu, Z.-Q., Cui, C.-L., Lu, H.-Y., Ding, L., & Yang, X.-D. (2009). A highly selective fluorescent chemosensor for fluoride based on an anthracene diamine derivative incorporating indole. Sensors and Actuators B: Chemical, 141(1), 200-204. doi:10.1016/j.snb.2009.06.015

Ghosh, K., & Sarkar, A. R. (2009). Anthracene-based macrocyclic fluorescent chemosensor for selective sensing of dicarboxylate. Tetrahedron Letters, 50(1), 85-88. doi:10.1016/j.tetlet.2008.10.135

Fujimoto, K., Yamada, S., & Inouye, M. (2009). Synthesis of versatile fluorescent sensors based on Click chemistry: detection of unsaturated fatty acids by their pyrene-emission switching. Chemical Communications, (46), 7164. doi:10.1039/b916543f

Xu, Z., Singh, N. J., Lim, J., Pan, J., Kim, H. N., Park, S., … Yoon, J. (2009). Unique Sandwich Stacking of Pyrene-Adenine-Pyrene for Selective and Ratiometric Fluorescent Sensing of ATP at Physiological pH. Journal of the American Chemical Society, 131(42), 15528-15533. doi:10.1021/ja906855a

Zeng, L., Wang, P., Zhang, H., Zhuang, X., Dai, Q., & Liu, W. (2009). Highly Selective and Sensitive Heparin Probing from Supramolecular Assembly of Pyrene Derivatives. Organic Letters, 11(19), 4294-4297. doi:10.1021/ol901392p

Kumar, M., Kumar, R., & Bhalla, V. (2009). F−-Induced ‘turn-on’ fluorescent chemosensor based on 1,3-alt thiacalix[4]arene. Tetrahedron, 65(22), 4340-4344. doi:10.1016/j.tet.2009.03.074

Nair, A. K., Neelakandan, P. P., & Ramaiah, D. (2009). A supramolecular Cu(ii) metallocyclophane probe for guanosine 5′-monophosphate. Chemical Communications, (42), 6352. doi:10.1039/b911855a

Huang, X., He, Y., Hu, C., & Chen, Z. (2009). A Selective Metal-Ligand Fluorescent Chemosensor for Dihydrogen Phosphate via Intermolecular Excimer Formation in Water. European Journal of Organic Chemistry, 2009(10), 1549-1553. doi:10.1002/ejoc.200801077

Singh, N., Jung, H. J., & Jang, D. O. (2009). Cu(II) complex of a flexible tripodal receptor as a highly selective fluorescent probe for iodide. Tetrahedron Letters, 50(1), 71-74. doi:10.1016/j.tetlet.2008.10.088

Zeng, Z., & Spiccia, L. (2009). OFFâ ON Fluorescent Detection of Thymidine Nucleotides by a Zinc(II)â Cyclen Complex Bearing Two Diagonal Pyrenes. Chemistry - A European Journal, 15(47), 12941-12944. doi:10.1002/chem.200902734

Singh, N., Kaur, N., Dunn, J., Behan, R., Mulrooney, R. C., & Callan, J. F. (2009). A polymeric sensor for the chromogenic and luminescent detection of anions. European Polymer Journal, 45(1), 272-277. doi:10.1016/j.eurpolymj.2008.10.040

Veale, E. B., Tocci, G. M., Pfeffer, F. M., Kruger, P. E., & Gunnlaugsson, T. (2009). Demonstration of bidirectional photoinduced electron transfer (PET) sensing in 4-amino-1,8-naphthalimide based thiourea anion sensors. Organic & Biomolecular Chemistry, 7(17), 3447. doi:10.1039/b907037k

Muñiz, F. M., Alcázar, V., Simón, L., Raposo, C., Calle, E., & Morán, J. R. (2009). Daxabe - A Xanthene-Based Fluorescent Sensor for 3,5-Dinitrobenzoic Acid and Anions. European Journal of Organic Chemistry, 2009(7), 1009-1015. doi:10.1002/ejoc.200800725

Toganoh, M., Miyachi, H., Akimaru, H., Ito, F., Nagamura, T., & Furuta, H. (2009). Anion responsive dyad system of porphyrin and N-confused porphyrin. Organic & Biomolecular Chemistry, 7(15), 3027. doi:10.1039/b907775h

Shundo, A., Hill, J. P., & Ariga, K. (2009). Toward Volatile and Nonvolatile Molecular Memories: Fluorescence Switching Based on Fluoride-Triggered Interconversion of Simple Porphyrin Derivatives. Chemistry - A European Journal, 15(11), 2486-2490. doi:10.1002/chem.200802469

Panzella, L., Pezzella, A., Arzillo, M., Manini, P., Napolitano, A., & d’ Ischia, M. (2009). A novel fluoride-sensing scaffold by a peculiar acid-promoted trimerization of 5,6-dihydroxyindole. Tetrahedron, 65(10), 2032-2036. doi:10.1016/j.tet.2009.01.003

Pérez-Ruiz, R., Díaz, Y., Goldfuss, B., Hertel, D., Meerholz, K., & Griesbeck, A. G. (2009). Fluoride recognition by a chiral urea receptor linked to a phthalimide chromophore. Organic & Biomolecular Chemistry, 7(17), 3499. doi:10.1039/b908433a

Hiscock, J. R., Caltagirone, C., Light, M. E., Hursthouse, M. B., & Gale, P. A. (2009). Fluorescent carbazolylurea anion receptors. Organic & Biomolecular Chemistry, 7(9), 1781. doi:10.1039/b900178f

Costero, A. M., Colomer, J. V., Gil, S., & Parra, M. (2009). Fluorescent Cyclohexyl-Based Chemosensors for Selective Sensing of TMA Malonate in DMSO/Water. European Journal of Organic Chemistry, 2009(22), 3673-3677. doi:10.1002/ejoc.200900383

Ghosh, K., Masanta, G., & Chattopadhyay, A. P. (2009). Triphenylamine-Based PyridineN-Oxide and Pyridinium Salts for Size-Selective Recognition of Dicarboxylates. European Journal of Organic Chemistry, 2009(26), 4515-4524. doi:10.1002/ejoc.200900471

Kim, H. J., Bhuniya, S., Mahajan, R. K., Puri, R., Liu, H., Ko, K. C., … Kim, J. S. (2009). Fluorescence turn-on sensors for HSO4−. Chemical Communications, (46), 7128. doi:10.1039/b918324h

Lee, G. W., Singh, N., Jung, H. J., & Jang, D. O. (2009). Selective anion recognition by retarding the cooperative polarization effect of amide linkages. Tetrahedron Letters, 50(7), 807-810. doi:10.1016/j.tetlet.2008.12.003

Pramanik, A., & Das, G. (2009). An efficient phosphate sensor: tripodal quinoline excimer transduction. Tetrahedron, 65(11), 2196-2200. doi:10.1016/j.tet.2009.01.049

Curiel, D., Espinosa, A., Más-Montoya, M., Sánchez, G., Tárraga, A., & Molina, P. (2009). A new open benzodipyrrole-based chemosensor for hydrogenpyrophosphate anion in aqueous environment. Chemical Communications, (48), 7539. doi:10.1039/b913345c

Bazzicalupi, C., Bencini, A., Biagini, S., Faggi, E., Meini, S., Giorgi, C., … Valtancoli, B. (2009). Exploring the Binding Ability of Phenanthroline-Based Polyammonium Receptors for Anions: Hints for Design of Selective Chemosensors for Nucleotides. The Journal of Organic Chemistry, 74(19), 7349-7363. doi:10.1021/jo901423m

Bazzicalupi, C., Biagini, S., Bencini, A., Faggi, E., Giorgi, C., Matera, I., & Valtancoli, B. (2006). ATP Recognition and sensing with a phenanthroline-containing polyammonium receptor. Chemical Communications, (39), 4087. doi:10.1039/b611031b

Pu, K.-Y., & Liu, B. (2009). Conjugated Polyelectrolytes as Light-Up Macromolecular Probes for Heparin Sensing. Advanced Functional Materials, 19(2), 277-284. doi:10.1002/adfm.200800960

Jagt, R. B. C., Gómez-Biagi, R. F., & Nitz, M. (2009). Pattern-Based Recognition of Heparin Contaminants by an Array of Self-Assembling Fluorescent Receptors. Angewandte Chemie International Edition, 48(11), 1995-1997. doi:10.1002/anie.200805238

Qian, J., Qian, X., & Xu, Y. (2008). Selective and Sensitive Chromo- and Fluorogenic Dual Detection of Anionic Surfactants in Water Based on a Pair of «On-Off-On» Fluorescent Sensors. Chemistry - A European Journal, 15(2), 319-323. doi:10.1002/chem.200801845

Kim, M. J., Swamy, K. M. K., Lee, K. M., Jagdale, A. R., Kim, Y., Kim, S.-J., … Yoon, J. (2009). Pyrophosphate selective fluorescent chemosensors based on coumarin–DPA–Cu(ii) complexes. Chemical Communications, (46), 7215. doi:10.1039/b913809a

Goswami, S., & Chakrabarty, R. (2009). Cu(II) complex of an abiotic receptor as highly selective fluorescent sensor for acetate. Tetrahedron Letters, 50(44), 5994-5997. doi:10.1016/j.tetlet.2009.08.021

Kwong, H.-L., Wong, W.-L., Lee, C.-S., Yeung, C.-T., & Teng, P.-F. (2009). Zinc(II) complex of terpyridine-crown macrocycle: A new motif in fluorescence sensing of zwitterionic amino acids. Inorganic Chemistry Communications, 12(9), 815-818. doi:10.1016/j.inoche.2009.06.013

Chen, X., Jou, M. J., & Yoon, J. (2009). An «Off-On» Type UTP/UDP Selective Fluorescent Probe and Its Application to Monitor Glycosylation Process. Organic Letters, 11(10), 2181-2184. doi:10.1021/ol9004849

Chou, C.-C., Liu, H.-J., & Hung-Chieh Chao, L. (2009). A facile iodide-controlled fluorescent switch based on the interconversion between two- and three-coordinate copper(i) complexes. Chemical Communications, (42), 6382. doi:10.1039/b908765f

Ojida, A., Sakamoto, T., Inoue, M., Fujishima, S., Lippens, G., & Hamachi, I. (2009). Fluorescent BODIPY-Based Zn(II) Complex as a Molecular Probe for Selective Detection of Neurofibrillary Tangles in the Brains of Alzheimer’s Disease Patients. Journal of the American Chemical Society, 131(18), 6543-6548. doi:10.1021/ja9008369

Rhee, H.-W., Choi, S. J., Yoo, S. H., Jang, Y. O., Park, H. H., Pinto, R. M., … Hong, J.-I. (2009). A Bifunctional Molecule as an Artificial Flavin Mononucleotide Cyclase and a Chemosensor for Selective Fluorescent Detection of Flavins. Journal of the American Chemical Society, 131(29), 10107-10112. doi:10.1021/ja9018012

DOSSANTOS, C., HARTE, A., QUINN, S., & GUNNLAUGSSON, T. (2008). Recent developments in the field of supramolecular lanthanide luminescent sensors and self-assemblies. Coordination Chemistry Reviews, 252(23-24), 2512-2527. doi:10.1016/j.ccr.2008.07.018

Leonard, J. P., & Gunnlaugsson, T. (2005). Luminescent Eu(III) and Tb(III) Complexes: Developing Lanthanide Luminescent-Based Devices. Journal of Fluorescence, 15(4), 585-595. doi:10.1007/s10895-005-2831-9

Xu, H.-B., Chen, X.-M., Zhang, Q.-S., Zhang, L.-Y., & Chen, Z.-N. (2009). Fluoride-enhanced lanthanide luminescence and white-light emitting in multifunctional Al3Ln2 (Ln = Nd, Eu, Yb) heteropentanuclear complexes. Chemical Communications, (47), 7318. doi:10.1039/b912474h

Dos Santos, C. M. G., & Gunnlaugsson, T. (2009). The recognition of anions using delayed lanthanide luminescence: The use of Tb(iii) based urea functionalised cyclen complexes. Dalton Transactions, (24), 4712. doi:10.1039/b902955a

Pálinkás, Z., Roca-Sabio, A., Mato-Iglesias, M., Esteban-Gómez, D., Platas-Iglesias, C., de Blas, A., … Tóth, E. (2009). Stability, Water Exchange, and Anion Binding Studies on Lanthanide(III) Complexes with a Macrocyclic Ligand Based on 1,7-Diaza-12-crown-4: Extremely Fast Water Exchange on the Gd3+Complex. Inorganic Chemistry, 48(18), 8878-8889. doi:10.1021/ic9011197

Pal, R., Parker, D., & Costello, L. C. (2009). A europium luminescence assay of lactate and citrate in biological fluids. Organic & Biomolecular Chemistry, 7(8), 1525. doi:10.1039/b901251f

Masaki, M. E., Paul, D., Nakamura, R., Kataoka, Y., Shinoda, S., & Tsukube, H. (2009). Chiral tripode approach toward multiple anion sensing with lanthanide complexes. Tetrahedron, 65(12), 2525-2530. doi:10.1016/j.tet.2009.01.061

Baker, N. C. A., McGaughey, N., Fletcher, N. C., Chernikov, A. V., Horton, P. N., & Hursthouse, M. B. (2009). The comparison of fac and merruthenium(ii) trischelate complexes in anion binding. Dalton Trans., (6), 965-972. doi:10.1039/b816149f

Berni, E., Gosse, I., Badocco, D., Pastore, P., Sojic, N., & Pinet, S. (2009). Differential Photoluminescent and Electrochemiluminescent Detection of Anions with a Modified Ruthenium(II)-Bipyridyl Complex. Chemistry - A European Journal, 15(20), 5145-5152. doi:10.1002/chem.200802544

Jung, H. S., Kim, H. J., Vicens, J., & Kim, J. S. (2009). A new fluorescent chemosensor for F− based on inhibition of excited-state intramolecular proton transfer. Tetrahedron Letters, 50(9), 983-987. doi:10.1016/j.tetlet.2008.12.026

Boiocchi, M., Bonizzoni, M., Fabbrizzi, L., Piovani, G., & Taglietti, A. (2004). A Dimetallic Cage with a Long Ellipsoidal Cavity for the Fluorescent Detection of Dicarboxylate Anions in Water. Angewandte Chemie International Edition, 43(29), 3847-3852. doi:10.1002/anie.200460036

Kubo, Y., Kobayashi, A., Ishida, T., Misawa, Y., & James, T. D. (2005). Detection of anions using a fluorescent alizarin–phenylboronic acid ensemble. Chemical Communications, (22), 2846. doi:10.1039/b503588k

Zeng, Q., Cai, P., Li, Z., Qin, J., & Tang, B. Z. (2008). An imidazole-functionalized polyacetylene: convenient synthesis and selective chemosensor for metal ions and cyanide. Chemical Communications, (9), 1094. doi:10.1039/b717764j

Massue, J., Quinn, S. J., & Gunnlaugsson, T. (2008). Lanthanide Luminescent Displacement Assays: The Sensing of Phosphate Anions Using Eu(III)−Cyclen-Conjugated Gold Nanoparticles in Aqueous Solution. Journal of the American Chemical Society, 130(22), 6900-6901. doi:10.1021/ja800361e

Jang, H. H., Yi, S., Kim, M. H., Kim, S., Lee, N. H., & Han, M. S. (2009). A simple method for improving the optical properties of a dimetallic coordination fluorescent chemosensor for adenosine triphosphate. Tetrahedron Letters, 50(46), 6241-6243. doi:10.1016/j.tetlet.2009.09.016

Horie, S., & Kubo, Y. (2009). Fluorescence-based Indicator Displacement Assay for Phosphosugar Detection Using Zinc(II) Dipicolylamine-appended Phenylboronic Acid. Chemistry Letters, 38(6), 616-617. doi:10.1246/cl.2009.616

Tang, L., Li, Y., Zhang, H., Guo, Z., & Qian, J. (2009). A new chemosensing ensemble for fluorescent recognition of pyrophosphate in water at physiological pH. Tetrahedron Letters, 50(49), 6844-6847. doi:10.1016/j.tetlet.2009.09.133

Veliscek Carolan, J., Butler, S. J., & Jolliffe, K. A. (2009). Selective Anion Binding in Water with Use of a Zinc(II) Dipicolylamino Functionalized Diketopiperazine Scaffold. The Journal of Organic Chemistry, 74(8), 2992-2996. doi:10.1021/jo802555u

McDonough, M. J., Reynolds, A. J., Lee, W. Y. G., & Jolliffe, K. A. (2006). Selective recognition of pyrophosphate in water using a backbone modified cyclic peptide receptor. Chemical Communications, (28), 2971. doi:10.1039/b606917g

Khatua, S., Choi, S. H., Lee, J., Kim, K., Do, Y., & Churchill, D. G. (2009). Aqueous Fluorometric and Colorimetric Sensing of Phosphate Ions by a Fluorescent Dinuclear Zinc Complex. Inorganic Chemistry, 48(7), 2993-2999. doi:10.1021/ic8022387

Ambrosi, G., Formica, M., Fusi, V., Giorgi, L., Guerri, A., Macedi, E., … Rossi, P. (2009). Phosphates Sensing: Two Polyamino-Phenolic Zinc Receptors Able to Discriminate and Signal Phosphates in Water. Inorganic Chemistry, 48(13), 5901-5912. doi:10.1021/ic900231h

Chung, S.-Y., Nam, S.-W., Lim, J., Park, S., & Yoon, J. (2009). A highly selective cyanide sensing in water via fluorescence change and its application to in vivo imaging. Chemical Communications, (20), 2866. doi:10.1039/b901140d

Guliyev, R., Buyukcakir, O., Sozmen, F., & Bozdemir, O. A. (2009). Cyanide sensing via metal ion removal from a fluorogenic BODIPY complex. Tetrahedron Letters, 50(36), 5139-5141. doi:10.1016/j.tetlet.2009.06.117

Lin, W., Yuan, L., Cao, X., Chen, B., & Feng, Y. (2009). A fluorescence turn-on probe for iodide based on the redox reaction between cupric and iodide. Sensors and Actuators B: Chemical, 138(2), 637-641. doi:10.1016/j.snb.2009.02.036

Descalzo, A. B., & Rurack, K. (2009). On the Signalling Pathways and CuII-Mediated Anion Indication ofN-meso-Substituted Heptamethine Cyanine Dyes. Chemistry - A European Journal, 15(13), 3173-3185. doi:10.1002/chem.200802087

Joseph, R., Ramanujam, B., Acharya, A., & Rao, C. P. (2009). Lower Rim 1,3-Di{bis(2-picolyl)}amide Derivative of Calix[4]arene (L) as Ratiometric Primary Sensor toward Ag+and the Complex of Ag+as Secondary Sensor toward Cys: Experimental, Computational, and Microscopy Studies and INHIBIT Logic Gate Properties of L‡. The Journal of Organic Chemistry, 74(21), 8181-8190. doi:10.1021/jo901676s

Chen, K.-H., Liao, J.-H., Chan, H.-Y., & Fang, J.-M. (2009). A Fluorescence Sensor for Detection of Geranyl Pyrophosphate by the Chemo-Ensemble Method. The Journal of Organic Chemistry, 74(2), 895-898. doi:10.1021/jo802173b

Zhong, C., Mu, T., Wang, L., Fu, E., & Qin, J. (2009). Unexpected fluorescent behavior of a 4-amino-1,8-naphthalimide derived β-cyclodextrin: conformation analysis and sensing properties. Chemical Communications, (27), 4091. doi:10.1039/b902132a

Liu, X. Y., Bai, D. R., & Wang, S. (2006). Charge-Transfer Emission in Nonplanar Three-Coordinate Organoboron Compounds for Fluorescent Sensing of Fluoride. Angewandte Chemie International Edition, 45(33), 5475-5478. doi:10.1002/anie.200601286

Sreejith, S., Divya, K. P., & Ajayaghosh, A. (2008). A Near-Infrared Squaraine Dye as a Latent Ratiometric Fluorophore for the Detection of Aminothiol Content in Blood Plasma. Angewandte Chemie International Edition, 47(41), 7883-7887. doi:10.1002/anie.200803194

Lee, M. H., Agou, T., Kobayashi, J., Kawashima, T., & Gabba?, F. P. (2007). Fluoride ion complexation by a cationic borane in aqueous solution. Chemical Communications, (11), 1133. doi:10.1039/b616814k

Lee, K.-S., Kim, T.-K., Lee, J. H., Kim, H.-J., & Hong, J.-I. (2008). Fluorescence turn-on probe for homocysteine and cysteine in water. Chemical Communications, (46), 6173. doi:10.1039/b814581d

Chen, X., Ko, S.-K., Kim, M. J., Shin, I., & Yoon, J. (2010). A thiol-specific fluorescent probe and its application for bioimaging. Chemical Communications, 46(16), 2751. doi:10.1039/b925453f

Shiu, H.-Y., Chong, H.-C., Leung, Y.-C., Wong, M.-K., & Che, C.-M. (2010). A Highly Selective FRET-Based Fluorescent Probe for Detection of Cysteine and Homocysteine. Chemistry - A European Journal, 16(11), 3308-3313. doi:10.1002/chem.200903121

Chen, C.-L., Chen, Y.-H., Chen, C.-Y., & Sun, S.-S. (2006). Dipyrrole Carboxamide Derived Selective Ratiometric Probes for Cyanide Ion. Organic Letters, 8(22), 5053-5056. doi:10.1021/ol061969g

Lee, K.-S., Kim, H.-J., Kim, G.-H., Shin, I., & Hong, J.-I. (2008). Fluorescent Chemodosimeter for Selective Detection of Cyanide in Water. Organic Letters, 10(1), 49-51. doi:10.1021/ol7025763

Kim, G.-J., & Kim, H.-J. (2010). Coumarinyl aldehyde as a Michael acceptor type of colorimetric and fluorescent probe for cyanide in water. Tetrahedron Letters, 51(21), 2914-2916. doi:10.1016/j.tetlet.2010.03.104

Badugu, R., Lakowicz, J. R., & Geddes, C. D. (2005). Enhanced Fluorescence Cyanide Detection at Physiologically Lethal Levels:  Reduced ICT-Based Signal Transduction. Journal of the American Chemical Society, 127(10), 3635-3641. doi:10.1021/ja044421i

Yi, L., Li, H., Sun, L., Liu, L., Zhang, C., & Xi, Z. (2009). A Highly Sensitive Fluorescence Probe for Fast Thiol-Quantification Assay of Glutathione Reductase. Angewandte Chemie International Edition, 48(22), 4034-4037. doi:10.1002/anie.200805693

Lin, W., Yuan, L., Cao, Z., Feng, Y., & Long, L. (2009). A Sensitive and Selective Fluorescent Thiol Probe in Water Based on the Conjugate 1,4-Addition of Thiols to α,β-Unsaturated Ketones. Chemistry - A European Journal, 15(20), 5096-5103. doi:10.1002/chem.200802751

Ji, S., Yang, J., Yang, Q., Liu, S., Chen, M., & Zhao, J. (2009). Tuning the Intramolecular Charge Transfer of Alkynylpyrenes: Effect on Photophysical Properties and Its Application in Design of OFF−ON Fluorescent Thiol Probes. The Journal of Organic Chemistry, 74(13), 4855-4865. doi:10.1021/jo900588e

Huang, K., Yang, H., Zhou, Z., Chen, H., Li, F., Yi, T., & Huang, C. (2009). A highly selective phosphorescent chemodosimeter for cysteine and homocysteine based on platinum(II) complexes. Inorganica Chimica Acta, 362(8), 2577-2580. doi:10.1016/j.ica.2008.11.026

Hong, V., Kislukhin, A. A., & Finn, M. G. (2009). Thiol-Selective Fluorogenic Probes for Labeling and Release. Journal of the American Chemical Society, 131(29), 9986-9994. doi:10.1021/ja809345d

Li, H., Fan, J., Wang, J., Tian, M., Du, J., Sun, S., … Peng, X. (2009). A fluorescent chemodosimeter specific for cysteine: effective discrimination of cysteine from homocysteine. Chemical Communications, (39), 5904. doi:10.1039/b907511a

Li, H., Xu, J., & Yan, H. (2009). Ratiometric fluorescent determination of cysteine based on organic nanoparticles of naphthalene–thiourea–thiadiazole-linked molecule. Sensors and Actuators B: Chemical, 139(2), 483-487. doi:10.1016/j.snb.2009.03.028

Kikuchi, K., Hashimoto, S., Mizukami, S., & Nagano, T. (2009). Anion Sensor-Based Ratiometric Peptide Probe for Protein Kinase Activity. Organic Letters, 11(13), 2732-2735. doi:10.1021/ol9006508

Agou, T., Sekine, M., Kobayashi, J., & Kawashima, T. (2009). Synthesis and reactivity of a bis(dimesitylboryl)azaborine and its fluoride sensing ability. Chemical Communications, (14), 1894. doi:10.1039/b818505k

Xu, Z., Kim, S. K., Han, S. J., Lee, C., Kociok-Kohn, G., James, T. D., & Yoon, J. (2009). Ratiometric Fluorescence Sensing of Fluoride Ions by an Asymmetric Bidentate Receptor Containing a Boronic Acid and Imidazolium Group. European Journal of Organic Chemistry, 2009(18), 3058-3065. doi:10.1002/ejoc.200900120

Zhao, C.-H., Sakuda, E., Wakamiya, A., & Yamaguchi, S. (2009). Highly Emissive Diborylphenylene-Containing Bis(phenylethynyl)benzenes: Structure-Photophysical Property Correlations and Fluoride Ion Sensing. Chemistry - A European Journal, 15(40), 10603-10612. doi:10.1002/chem.200900864

Meng, G., Velayudham, S., Smith, A., Luck, R., & Liu, H. (2009). Color Tuning of Polyfluorene Emission with BODIPY Monomers. Macromolecules, 42(6), 1995-2001. doi:10.1021/ma8023975

Agou, T., Sekine, M., Kobayashi, J., & Kawashima, T. (2009). Detection of Biologically Important Anions in Aqueous Media by Dicationic Azaborines Bearing Ammonio or Phosphonio Groups. Chemistry - A European Journal, 15(20), 5056-5062. doi:10.1002/chem.200802159

Kim, Y., Zhao, H., & Gabbaï, F. P. (2009). Sulfonium Boranes for the Selective Capture of Cyanide Ions in Water. Angewandte Chemie International Edition, 48(27), 4957-4960. doi:10.1002/anie.200901275

Jamkratoke, M., Ruangpornvisuti, V., Tumcharern, G., Tuntulani, T., & Tomapatanaget, B. (2009). A-D-A Sensors Based on Naphthoimidazoledione and Boronic Acid as Turn-On Cyanide Probes in Water. The Journal of Organic Chemistry, 74(10), 3919-3922. doi:10.1021/jo900170r

Yoshino, J., Kano, N., & Kawashima, T. (2009). Fluorescence Properties of Simple N-Substituted Aldimines with a B−N Interaction and Their Fluorescence Quenching by a Cyanide Ion. The Journal of Organic Chemistry, 74(19), 7496-7503. doi:10.1021/jo901733b

Jo, J., & Lee, D. (2009). Turn-On Fluorescence Detection of Cyanide in Water: Activation of Latent Fluorophores through Remote Hydrogen Bonds That Mimic Peptide β-Turn Motif. Journal of the American Chemical Society, 131(44), 16283-16291. doi:10.1021/ja907056m

Peng, L., Wang, M., Zhang, G., Zhang, D., & Zhu, D. (2009). A Fluorescence Turn-on Detection of Cyanide in Aqueous Solution Based on the Aggregation-Induced Emission. Organic Letters, 11(9), 1943-1946. doi:10.1021/ol900376r

Lin, W., Long, L., Chen, B., & Tan, W. (2009). A Ratiometric Fluorescent Probe for Hypochlorite Based on a Deoximation Reaction. Chemistry - A European Journal, 15(10), 2305-2309. doi:10.1002/chem.200802054

Yang, Y.-K., Cho, H. J., Lee, J., Shin, I., & Tae, J. (2009). A Rhodamine−Hydroxamic Acid-Based Fluorescent Probe for Hypochlorous Acid and Its Applications to Biological Imagings. Organic Letters, 11(4), 859-861. doi:10.1021/ol802822t

Sun, Z.-N., Wang, H.-L., Liu, F.-Q., Chen, Y., Tam, P. K. H., & Yang, D. (2009). BODIPY-Based Fluorescent Probe for Peroxynitrite Detection and Imaging in Living Cells. Organic Letters, 11(9), 1887-1890. doi:10.1021/ol900279z

Sun, Y., Zhong, C., Gong, R., Mu, H., & Fu, E. (2009). A Ratiometric Fluorescent Chemodosimeter with Selective Recognition for Sulfite in Aqueous Solution. The Journal of Organic Chemistry, 74(20), 7943-7946. doi:10.1021/jo9014744

Mulrooney, R. C., Singh, N., Kaur, N., & Callan, J. F. (2009). An «off–on» sensor for fluoride using luminescent CdSe/ZnS quantum dots. Chem. Commun., (6), 686-688. doi:10.1039/b817569a

Zhao, L., Mullen, K. M., Chmielewski, M. J., Brown, A., Bampos, N., Beer, P. D., & Davis, J. J. (2009). Anion templated assembly of an indolocarbazole containing pseudorotaxane on beads and silica nanoparticles. New Journal of Chemistry, 33(4), 760. doi:10.1039/b818854h

Qiu, Y., Deng, H., Mou, J., Yang, S., Zeller, M., Batten, S. R., … Li, J. (2009). In situ tetrazole ligand synthesis leading to a microporous cadmium–organic framework for selective ion sensing. Chemical Communications, (36), 5415. doi:10.1039/b907783a

Shang, L., Jin, L., & Dong, S. (2009). Sensitive turn-on fluorescent detection of cyanide based on the dissolution of fluorophore functionalized gold nanoparticles. Chemical Communications, (21), 3077. doi:10.1039/b902216c

Kim, I.-B., Han, M. H., Phillips, R. L., Samanta, B., Rotello, V. M., Zhang, Z. J., & Bunz, U. H. F. (2008). Nano-Conjugate Fluorescence Probe for the Discrimination of Phosphate and Pyrophosphate. Chemistry - A European Journal, 15(2), 449-456. doi:10.1002/chem.200801403

Song, Y., Zhao, C., Ren, J., & Qu, X. (2009). Rapid and ultra-sensitive detection of AMP using a fluorescent and magnetic nano-silica sandwich complex. Chemical Communications, (15), 1975. doi:10.1039/b818415a

Wada, A., Tamaru, S., Ikeda, M., & Hamachi, I. (2009). MCM−Enzyme−Supramolecular Hydrogel Hybrid as a Fluorescence Sensing Material for Polyanions of Biological Significance. Journal of the American Chemical Society, 131(14), 5321-5330. doi:10.1021/ja900500j

Shang, L., Zhang, L., & Dong, S. (2009). Turn-on fluorescent cyanide sensor based on copper ion-modified CdTe quantum dots. The Analyst, 134(1), 107-113. doi:10.1039/b812458b




This item appears in the following Collection(s)

Show full item record