- -

Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the years 2010-2011

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the years 2010-2011

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Santos Figueroa, Luis Enrique es_ES
dc.contributor.author Moragues Pons, María Esperanza es_ES
dc.contributor.author Climent Terol, Estela es_ES
dc.contributor.author Agostini, Alessandro es_ES
dc.contributor.author Martínez Mañez, Ramón es_ES
dc.contributor.author Sancenón Galarza, Félix es_ES
dc.date.accessioned 2014-05-09T10:41:48Z
dc.date.issued 2013-02-11
dc.identifier.issn 0306-0012
dc.identifier.uri http://hdl.handle.net/10251/37348
dc.description.abstract This review focuses on examples reported in the years 2010¿2011 dealing with the design of chromogenic and fluorogenic chemosensors or reagents for anions. es_ES
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Chemical Society Reviews es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Anions es_ES
dc.subject Chromogenic substrate es_ES
dc.subject Coordination compound es_ES
dc.subject Fluorescent dye es_ES
dc.subject Nanoparticle es_ES
dc.subject Chromogenic Compounds es_ES
dc.subject Coordination Complexes es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the years 2010-2011 es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1039/C3CS35429F
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic es_ES
dc.description.bibliographicCitation Santos Figueroa, LE.; Moragues Pons, ME.; Climent Terol, E.; Agostini, A.; Martínez Mañez, R.; Sancenón Galarza, F. (2013). Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the years 2010-2011. Chemical Society Reviews. 42(8):3489-3613. doi:10.1039/C3CS35429F es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1039/C3CS35429F es_ES
dc.description.upvformatpinicio 3489 es_ES
dc.description.upvformatpfin 3613 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 42 es_ES
dc.description.issue 8 es_ES
dc.relation.senia 237973
dc.description.references Martínez-Máñez, R., & Sancenón, F. (2003). Fluorogenic and Chromogenic Chemosensors and Reagents for Anions. Chemical Reviews, 103(11), 4419-4476. doi:10.1021/cr010421e es_ES
dc.description.references Katayev, E. A., Ustynyuk, Y. A., & Sessler, J. L. (2006). Receptors for tetrahedral oxyanions. Coordination Chemistry Reviews, 250(23-24), 3004-3037. doi:10.1016/j.ccr.2006.04.013 es_ES
dc.description.references Suksai, C., & Tuntulani, T. (2003). Chromogenic anion sensors. Chemical Society Reviews, 32(4), 192. doi:10.1039/b209598j es_ES
dc.description.references Kim, S. K., Lee, D. H., Hong, J.-I., & Yoon, J. (2009). Chemosensors for Pyrophosphate. Accounts of Chemical Research, 42(1), 23-31. doi:10.1021/ar800003f es_ES
dc.description.references Beer, P. (2000). Electrochemical and optical sensing of anions by transition metal based receptors. Coordination Chemistry Reviews, 205(1), 131-155. doi:10.1016/s0010-8545(00)00237-x es_ES
dc.description.references Zhou, Y., Xu, Z., & Yoon, J. (2011). Fluorescent and colorimetric chemosensors for detection of nucleotides, FAD and NADH: highlighted research during 2004–2010. Chemical Society Reviews, 40(5), 2222. doi:10.1039/c0cs00169d es_ES
dc.description.references Gunnlaugsson, T., Glynn, M., Tocci (née Hussey), G. M., Kruger, P. E., & Pfeffer, F. M. (2006). Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors. Coordination Chemistry Reviews, 250(23-24), 3094-3117. doi:10.1016/j.ccr.2006.08.017 es_ES
dc.description.references Amendola, V., Esteban-Gómez, D., Fabbrizzi, L., & Licchelli, M. (2006). What Anions Do to N−H-Containing Receptors. Accounts of Chemical Research, 39(5), 343-353. doi:10.1021/ar050195l es_ES
dc.description.references Gunnlaugsson, T., Ali, H. D. P., Glynn, M., Kruger, P. E., Hussey, G. M., Pfeffer, F. M., … Tierney, J. (2005). Fluorescent Photoinduced Electron Transfer (PET) Sensors for Anions; From Design to Potential Application. Journal of Fluorescence, 15(3), 287-299. doi:10.1007/s10895-005-2627-y es_ES
dc.description.references Wiskur, S. L., Ait-Haddou, H., Lavigne, J. J., & Anslyn, E. V. (2001). Teaching Old Indicators New Tricks. Accounts of Chemical Research, 34(12), 963-972. doi:10.1021/ar9600796 es_ES
dc.description.references Nguyen, B. T., & Anslyn, E. V. (2006). Indicator–displacement assays. Coordination Chemistry Reviews, 250(23-24), 3118-3127. doi:10.1016/j.ccr.2006.04.009 es_ES
dc.description.references Xu, Z., Chen, X., Kim, H. N., & Yoon, J. (2010). Sensors for the optical detection ofcyanide ion. Chem. Soc. Rev., 39(1), 127-137. doi:10.1039/b907368j es_ES
dc.description.references Kaur, K., Saini, R., Kumar, A., Luxami, V., Kaur, N., Singh, P., & Kumar, S. (2012). Chemodosimeters: An approach for detection and estimation of biologically and medically relevant metal ions, anions and thiols. Coordination Chemistry Reviews, 256(17-18), 1992-2028. doi:10.1016/j.ccr.2012.04.013 es_ES
dc.description.references Zhou, Y., & Yoon, J. (2012). Recent progress in fluorescent and colorimetric chemosensors for detection ofamino acids. Chem. Soc. Rev., 41(1), 52-67. doi:10.1039/c1cs15159b es_ES
dc.description.references Moragues, M. E., Martínez-Máñez, R., & Sancenón, F. (2011). Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the year 2009. Chemical Society Reviews, 40(5), 2593. doi:10.1039/c0cs00015a es_ES
dc.description.references Aldrey, A., Núñez, C., García, V., Bastida, R., Lodeiro, C., & Macías, A. (2010). Anion sensing properties of new colorimetric chemosensors based on macrocyclic ligands bearing three nitrophenylurea groups. Tetrahedron, 66(47), 9223-9230. doi:10.1016/j.tet.2010.09.054 es_ES
dc.description.references Odago, M. O., Colabello, D. M., & Lees, A. J. (2010). A simple thiourea based colorimetric sensor for cyanide anion. Tetrahedron, 66(38), 7465-7471. doi:10.1016/j.tet.2010.07.006 es_ES
dc.description.references Piątek, P. (2011). A selective chromogenic chemosensor for carboxylate salt recognition. Chemical Communications, 47(16), 4745. doi:10.1039/c0cc05537a es_ES
dc.description.references He, X., Herranz, F., Cheng, E. C.-C., Vilar, R., & Yam, V. W.-W. (2010). Design, Synthesis, Photophysics, and Anion-Binding Studies of Bis(dicyclohexylphosphino)methane-Containing Dinuclear Gold(I) Thiolate Complexes with Urea Receptors. Chemistry - A European Journal, 16(30), 9123-9131. doi:10.1002/chem.201000647 es_ES
dc.description.references Lin, W.-C., Tseng, Y.-P., Lin, C.-Y., & Yen, Y.-P. (2011). Synthesis of alanine-based colorimetric sensors and enantioselective recognition of aspartate and malate anions. Organic & Biomolecular Chemistry, 9(15), 5547. doi:10.1039/c1ob05135k es_ES
dc.description.references Regueiro-Figueroa, M., Djanashvili, K., Esteban-Gómez, D., de Blas, A., Platas-Iglesias, C., & Rodríguez-Blas, T. (2010). Towards Selective Recognition of Sialic Acid Through Simultaneous Binding to Its cis-Diol and Carboxylate Functions. European Journal of Organic Chemistry, 2010(17), 3237-3248. doi:10.1002/ejoc.201000186 es_ES
dc.description.references Carasel, I. A., Yamnitz, C. R., Winter, R. K., & Gokel, G. W. (2010). Halide Ions Complex and Deprotonate Dipicolinamides and Isophthalamides: Assessment by Mass Spectrometry and UV−Visible Spectroscopy. The Journal of Organic Chemistry, 75(23), 8112-8116. doi:10.1021/jo101749a es_ES
dc.description.references Rostami, A., Colin, A., Li, X. Y., Chudzinski, M. G., Lough, A. J., & Taylor, M. S. (2010). N,N′-Diarylsquaramides: General, High-Yielding Synthesis and Applications in Colorimetric Anion Sensing. The Journal of Organic Chemistry, 75(12), 3983-3992. doi:10.1021/jo100104g es_ES
dc.description.references Amendola, V., Bergamaschi, G., Boiocchi, M., Fabbrizzi, L., & Milani, M. (2010). The Squaramide versus Urea Contest for Anion Recognition. Chemistry - A European Journal, 16(14), 4368-4380. doi:10.1002/chem.200903190 es_ES
dc.description.references Sola, A., Orenes, R. A., García, M. A., Claramunt, R. M., Alkorta, I., Elguero, J., … Molina, P. (2011). Unprecedented 1,3-Diaza[3]ferrocenophane Scaffold as Molecular Probe for Anions. Inorganic Chemistry, 50(9), 4212-4220. doi:10.1021/ic102314r es_ES
dc.description.references Lee, D. Y., Singh, N., Satyender, A., & Jang, D. O. (2011). An azo dye-coupled tripodal chromogenic sensor for cyanide. Tetrahedron Letters, 52(51), 6919-6922. doi:10.1016/j.tetlet.2011.10.061 es_ES
dc.description.references Haridas, V., Sahu, S., & Praveen Kumar, P. P. (2011). Triazole-based chromogenic and non-chromogenic receptors for halides. Tetrahedron Letters, 52(51), 6930-6934. doi:10.1016/j.tetlet.2011.10.066 es_ES
dc.description.references Park, J. J., Kim, Y.-H., Rhim, S., & Kang, J. (2012). Anion receptors with viologen molecular scaffold. Tetrahedron Letters, 53(2), 247-252. doi:10.1016/j.tetlet.2011.11.040 es_ES
dc.description.references Amendola, V., Fabbrizzi, L., Mosca, L., & Schmidtchen, F.-P. (2011). Urea-, Squaramide-, and Sulfonamide-Based Anion Receptors: A Thermodynamic Study. Chemistry - A European Journal, 17(21), 5972-5981. doi:10.1002/chem.201003411 es_ES
dc.description.references You, J.-M., Jeong, H., Seo, H., & Jeon, S. (2010). A new fluoride ion colorimetric sensor based on dipyrrolemethanes. Sensors and Actuators B: Chemical, 146(1), 160-164. doi:10.1016/j.snb.2010.02.042 es_ES
dc.description.references Farinha, A. S. F., Tomé, A. C., & Cavaleiro, J. A. S. (2010). (E)-3-(meso-Octamethylcalix[4]pyrrol-2-yl)propenal: a versatile precursor for calix[4]pyrrole-based chromogenic anion sensors. Tetrahedron Letters, 51(16), 2184-2187. doi:10.1016/j.tetlet.2010.02.091 es_ES
dc.description.references Lee, G. W., Kim, N.-K., & Jeong, K.-S. (2010). Synthesis of Biindole−Diazo Conjugates as a Colorimetric Anion Receptor. Organic Letters, 12(11), 2634-2637. doi:10.1021/ol100830b es_ES
dc.description.references Bose, P., & Ghosh, P. (2010). Visible and near-infrared sensing of fluoride by indole conjugated urea/thiourea ligands. Chemical Communications, 46(17), 2962. doi:10.1039/b919128c es_ES
dc.description.references Wang, L., He, X., Guo, Y., Xu, J., & Shao, S. (2011). Tris(indolyl)methene molecule as an anion receptor and colorimetric chemosensor: tunable selectivity and sensitivity for anions. Org. Biomol. Chem., 9(3), 752-757. doi:10.1039/c0ob00472c es_ES
dc.description.references Tetilla, M. A., Aragoni, M. C., Arca, M., Caltagirone, C., Bazzicalupi, C., Bencini, A., … Meli, V. (2011). Colorimetric response to anions by a «robust» copper(ii) complex of a [9]aneN3 pendant arm derivative: CN− and I− selective sensing. Chemical Communications, 47(13), 3805. doi:10.1039/c0cc04500d es_ES
dc.description.references Kundu, T., Mobin, S. M., & Lahiri, G. K. (2010). Paramagnetic ruthenium-biimidazole derivatives [(acac)2RuIII(LHn)]m, n/m = 2/+, 1/0, 0/−. Synthesis, structures, solution properties and anion receptor features in solution state. Dalton Transactions, 39(17), 4232. doi:10.1039/b919036h es_ES
dc.description.references Lee, C.-H., Lee, S., Yoon, H., & Jang, W.-D. (2011). Strong Binding Affinity of a Zinc-Porphyrin-Based Receptor for Halides through the Cooperative Effects of Quadruple CH Hydrogen Bonds and Axial Ligation. Chemistry - A European Journal, 17(49), 13898-13903. doi:10.1002/chem.201101884 es_ES
dc.description.references Swinburne, A. N., Paterson, M. J., Fischer, K. H., Dickson, S. J., Wallace, E. V. B., Belcher, W. J., … Steed, J. W. (2010). Colourimetric Carboxylate Anion Sensors Derived from Viologen-Based Receptors. Chemistry - A European Journal, 16(5), 1480-1492. doi:10.1002/chem.200902609 es_ES
dc.description.references Kannappan, R., Bucher, C., Saint-Aman, E., Moutet, J.-C., Milet, A., Oltean, M., … Chaix, C. (2010). Viologen-based redox-switchable anion-binding receptors. New Journal of Chemistry, 34(7), 1373. doi:10.1039/b9nj00757a es_ES
dc.description.references Kumari, N., Jha, S., & Bhattacharya, S. (2011). Colorimetric Probes Based on Anthraimidazolediones for Selective Sensing of Fluoride and Cyanide Ion via Intramolecular Charge Transfer. The Journal of Organic Chemistry, 76(20), 8215-8222. doi:10.1021/jo201290a es_ES
dc.description.references Amendola, V., Boiocchi, M., Fabbrizzi, L., & Fusco, N. (2011). Putting the Anion into the Cage - Fluoride Inclusion in the Smallest Trisimidazolium Macrotricycle. European Journal of Organic Chemistry, 2011(32), 6434-6444. doi:10.1002/ejoc.201100902 es_ES
dc.description.references Kumar, A., Kumar, V., & Upadhyay, K. K. (2011). A ninhydrin based colorimetric molecular switch for Hg2+ and CH3COO−/F−. Tetrahedron Letters, 52(50), 6809-6813. doi:10.1016/j.tetlet.2011.10.046 es_ES
dc.description.references Bao, X., & Zhou, Y. (2010). Synthesis and recognition properties of a class of simple colorimetric anion chemosensors containing OH and CONH groups. Sensors and Actuators B: Chemical, 147(2), 434-441. doi:10.1016/j.snb.2010.03.068 es_ES
dc.description.references Lou, X., Zhang, Y., Li, Q., Qin, J., & Li, Z. (2011). A highly specific rhodamine-based colorimetric probe for hypochlorites: a new sensing strategy and real application in tap water. Chemical Communications, 47(11), 3189. doi:10.1039/c0cc04911e es_ES
dc.description.references Shang, X.-F., Su, H., Lin, H., & Lin, H.-K. (2010). A supramolecular optic sensor for selective recognition AMP. Inorganic Chemistry Communications, 13(8), 999-1003. doi:10.1016/j.inoche.2010.04.006 es_ES
dc.description.references Mendy, J. S., Saeed, M. A., Fronczek, F. R., Powell, D. R., & Hossain, M. A. (2010). Anion Recognition and Sensing by a New Macrocyclic Dinuclear Copper(II) Complex: A Selective Receptor for Iodide. Inorganic Chemistry, 49(16), 7223-7225. doi:10.1021/ic100686m es_ES
dc.description.references Mahato, P., Ghosh, A., Mishra, S. K., Shrivastav, A., Mishra, S., & Das, A. (2011). Zn(II)−Cyclam Based Chromogenic Sensors for Recognition of ATP in Aqueous Solution Under Physiological Conditions and Their Application as Viable Staining Agents for Microorganism. Inorganic Chemistry, 50(9), 4162-4170. doi:10.1021/ic200223g es_ES
dc.description.references Mahato, P., Ghosh, A., Mishra, S. K., Shrivastav, A., Mishra, S., & Das, A. (2010). Zn(II) based colorimetric sensor for ATP and its use as a viable staining agent in pure aqueous media of pH 7.2. Chemical Communications, 46(48), 9134. doi:10.1039/c0cc01996h es_ES
dc.description.references Dalla Cort, A., Forte, G., & Schiaffino, L. (2011). Anion Recognition in Water with Use of a Neutral Uranyl-salophen Receptor. The Journal of Organic Chemistry, 76(18), 7569-7572. doi:10.1021/jo201213e es_ES
dc.description.references Das, P., Mandal, A. K., Kesharwani, M. K., Suresh, E., Ganguly, B., & Das, A. (2011). Receptor design and extraction of inorganic fluoride ion from aqueous medium. Chemical Communications, 47(26), 7398. doi:10.1039/c1cc11458a es_ES
dc.description.references Baumes, L. A., Buaki, M., Jolly, J., Corma, A., & Garcia, H. (2011). Fluorimetric detection and discrimination of α-amino acids based on tricyclic basic dyes and cucurbiturils supramolecular assembly. Tetrahedron Letters, 52(13), 1418-1421. doi:10.1016/j.tetlet.2011.01.071 es_ES
dc.description.references Baumes, L. A., Buaki Sogo, M., Montes-Navajas, P., Corma, A., & Garcia, H. (2010). A Colorimetric Sensor Array for the Detection of the Date-Rape Drug γ-Hydroxybutyric Acid (GHB): A Supramolecular Approach. Chemistry - A European Journal, 16(15), 4489-4495. doi:10.1002/chem.200903127 es_ES
dc.description.references Chifotides, H. T., Schottel, B. L., & Dunbar, K. R. (2010). The π-Accepting Arene HAT(CN)6 as a Halide Receptor through Charge Transfer: Multisite Anion Interactions and Self-Assembly in Solution and the Solid State. Angewandte Chemie International Edition, 49(40), 7202-7207. doi:10.1002/anie.201001755 es_ES
dc.description.references Gu, X., Liu, C., Zhu, Y.-C., & Zhu, Y.-Z. (2011). Development of a boron-dipyrromethene-Cu2+ ensemble based colorimetric probe toward hydrogen sulfide in aqueous media. Tetrahedron Letters, 52(39), 5000-5003. doi:10.1016/j.tetlet.2011.07.004 es_ES
dc.description.references Männel-Croisé, C., Meister, C., & Zelder, F. (2010). «Naked-Eye» Screening of Metal-Based Chemosensors for Biologically Important Anions. Inorganic Chemistry, 49(22), 10220-10222. doi:10.1021/ic1015115 es_ES
dc.description.references Watchasit, S., Kaowliew, A., Suksai, C., Tuntulani, T., Ngeontae, W., & Pakawatchai, C. (2010). Selective detection of pyrophosphate by new tripodal amine calix[4]arene-based Cu(II) complexes using indicator displacement strategy. Tetrahedron Letters, 51(26), 3398-3402. doi:10.1016/j.tetlet.2010.04.095 es_ES
dc.description.references Mateus, P., Delgado, R., Brandão, P., & Félix, V. (2011). Recognition of Oxalate by a Copper(II) Polyaza Macrobicyclic Complex. Chemistry - A European Journal, 17(25), 7020-7031. doi:10.1002/chem.201100428 es_ES
dc.description.references Chen, Z., Lu, Y., He, Y., & Huang, X. (2010). Recognition of pyrophosphate anion in aqueous solution using the competition displacement method. Sensors and Actuators B: Chemical, 149(2), 407-412. doi:10.1016/j.snb.2010.06.038 es_ES
dc.description.references Müller-Graff, P.-K., Szelke, H., Severin, K., & Krämer, R. (2010). Pattern-based sensing of sulfated glycosaminoglycans with a dynamic mixture of iron complexes. Organic & Biomolecular Chemistry, 8(10), 2327. doi:10.1039/c000420k es_ES
dc.description.references Hu, Z.-Q., Wang, X.-M., Feng, Y.-C., Ding, L., Li, M., & Lin, C.-S. (2011). A novel colorimetric and fluorescent chemosensor for acetate ions in aqueous media based on a rhodamine 6G–phenylurea conjugate in the presence of Fe(iii) ions. Chem. Commun., 47(5), 1622-1624. doi:10.1039/c0cc04136j es_ES
dc.description.references Singh, N., & Jang, D. O. (2011). A selective ATP chromogenic sensor for use in an indicator displacement assay. Tetrahedron Letters, 52(39), 5094-5097. doi:10.1016/j.tetlet.2011.07.096 es_ES
dc.description.references Ghosh, K., & Ranjan Sarkar, A. (2011). Pyridinium-based symmetrical diamides as chemosensors in visual sensing of citrate through indicator displacement assay (IDA) and gel formation. Organic & Biomolecular Chemistry, 9(19), 6551. doi:10.1039/c1ob05707c es_ES
dc.description.references Atta, A. K., Ahn, I.-H., Hong, A.-Y., Heo, J., Kim, C. K., & Cho, D.-G. (2012). Fluoride indicator that functions in mixed aqueous media: hydrogen bonding effects. Tetrahedron Letters, 53(5), 575-578. doi:10.1016/j.tetlet.2011.11.099 es_ES
dc.description.references Perry-Feigenbaum, R., Sella, E., & Shabat, D. (2011). Autoinductive Exponential Signal Amplification: A Diagnostic Probe for Direct Detection of Fluoride. Chemistry - A European Journal, 17(43), 12123-12128. doi:10.1002/chem.201101796 es_ES
dc.description.references Rajamalli, P., & Prasad, E. (2011). Low Molecular Weight Fluorescent Organogel for Fluoride Ion Detection. Organic Letters, 13(14), 3714-3717. doi:10.1021/ol201325j es_ES
dc.description.references Bhaumik, C., Das, S., Maity, D., & Baitalik, S. (2011). A terpyridyl-imidazole (tpy-HImzPh3) based bifunctional receptor for multichannel detection of Fe2+ and F− ions. Dalton Transactions, 40(44), 11795. doi:10.1039/c1dt10965k es_ES
dc.description.references Isaad, J., & Perwuelz, A. (2010). New color chemosensors for cyanide based on water soluble azo dyes. Tetrahedron Letters, 51(44), 5810-5814. doi:10.1016/j.tetlet.2010.08.098 es_ES
dc.description.references Wade, C. R., & Gabbaï, F. P. (2010). Cyanide Anion Binding by a Triarylborane at the Outer Rim of a Cyclometalated Ruthenium(II) Cationic Complex. Inorganic Chemistry, 49(2), 714-720. doi:10.1021/ic9020349 es_ES
dc.description.references Ábalos, T., Jiménez, D., Moragues, M., Royo, S., Martínez-Máñez, R., Sancenón, F., … Gil, S. (2010). Multi-channel receptors based on thiopyrylium functionalised with macrocyclic receptors for the recognition of transition metal cations and anions. Dalton Transactions, 39(14), 3449. doi:10.1039/b921486k es_ES
dc.description.references Ábalos, T., Royo, S., Martínez-Máñez, R., Sancenón, F., Soto, J., Costero, A. M., … Parra, M. (2009). Surfactant-assisted chromogenic sensing of cyanide in water. New Journal of Chemistry, 33(8), 1641. doi:10.1039/b909705h es_ES
dc.description.references Sumiya, S., Doi, T., Shiraishi, Y., & Hirai, T. (2012). Colorimetric sensing of cyanide anion in aqueous media with a fluorescein–spiropyran conjugate. Tetrahedron, 68(2), 690-696. doi:10.1016/j.tet.2011.10.097 es_ES
dc.description.references Shiraishi, Y., Itoh, M., & Hirai, T. (2011). Rapid colorimetric sensing of cyanide anion in aqueous media with a spiropyran derivative containing a dinitrophenolate moiety. Tetrahedron Letters, 52(13), 1515-1519. doi:10.1016/j.tetlet.2011.01.110 es_ES
dc.description.references Shiraishi, Y., Itoh, M., & Hirai, T. (2011). Colorimetric response of spiropyran derivative for anions in aqueous or organic media. Tetrahedron, 67(5), 891-897. doi:10.1016/j.tet.2010.12.021 es_ES
dc.description.references Isaad, J., & Achari, A. E. (2011). Biosourced 3-formyl chromenyl-azo dye as Michael acceptor type of chemodosimeter for cyanide in aqueous environment. Tetrahedron, 67(31), 5678-5685. doi:10.1016/j.tet.2011.05.083 es_ES
dc.description.references Isaad, J., & El Achari, A. (2011). A novel cyanide chemodosimeter based on trifluoroacetamide benzhydrol-2 as binding motif: importance of substituent positioning on intra-molecular charge transfer. Tetrahedron, 67(23), 4196-4201. doi:10.1016/j.tet.2011.04.059 es_ES
dc.description.references Park, I. S., Heo, E.-J., & Kim, J.-M. (2011). A photochromic phenoxyquinone based cyanide ion sensor. Tetrahedron Letters, 52(19), 2454-2457. doi:10.1016/j.tetlet.2011.02.105 es_ES
dc.description.references Tang, X., Liu, W., Wu, J., Zhao, W., Zhang, H., & Wang, P. (2011). A colorimetric chemosensor for fast detection of thiols based on intramolecular charge transfer. Tetrahedron Letters, 52(40), 5136-5139. doi:10.1016/j.tetlet.2011.07.111 es_ES
dc.description.references Wei, W., Liang, X., Hu, G., Guo, Y., & Shao, S. (2011). A highly selective colorimetric probe based on 2,2′,2″-trisindolylmethene for cysteine/homocysteine. Tetrahedron Letters, 52(13), 1422-1425. doi:10.1016/j.tetlet.2010.07.182 es_ES
dc.description.references Cui, K., Zhang, D., Zhang, G., & Zhu, D. (2010). A highly selective naked-eye probe for hypochlorite with the p-methoxyphenol-substituted aniline compound. Tetrahedron Letters, 51(46), 6052-6055. doi:10.1016/j.tetlet.2010.09.041 es_ES
dc.description.references Kim, M. H., Kim, S., Jang, H. H., Yi, S., Seo, S. H., & Han, M. S. (2010). A gold nanoparticle-based colorimetric sensing ensemble for the colorimetric detection of cyanide ions in aqueous solution. Tetrahedron Letters, 51(36), 4712-4716. doi:10.1016/j.tetlet.2010.07.002 es_ES
dc.description.references Zhang, S., Wang, J., Han, L., Li, C., Wang, W., & Yuan, Z. (2010). Colorimetric detection of bis-phosphorylated peptides using zinc(ii) dipicolylamine-appended gold nanoparticles. Sensors and Actuators B: Chemical, 147(2), 687-690. doi:10.1016/j.snb.2010.03.071 es_ES
dc.description.references Feng, D.-Q., Liu, G., Zheng, W., Liu, J., Chen, T., & Li, D. (2011). A highly selective and sensitive on–off sensor for silver ions and cysteine by light scattering technique of DNA-functionalized gold nanoparticles. Chemical Communications, 47(30), 8557. doi:10.1039/c1cc12377g es_ES
dc.description.references Cao, R., & Li, B. (2011). A simple and sensitive method for visual detection of heparin using positively-charged gold nanoparticles as colorimetric probes. Chemical Communications, 47(10), 2865. doi:10.1039/c0cc05094f es_ES
dc.description.references Liu, C.-Y., & Tseng, W.-L. (2011). Colorimetric assay for cyanide and cyanogenic glycoside using polysorbate 40-stabilized gold nanoparticles. Chemical Communications, 47(9), 2550. doi:10.1039/c0cc04591h es_ES
dc.description.references Zhang, M., Liu, Y.-Q., & Ye, B.-C. (2011). Rapid and sensitive colorimetric visualization of phthalates using UTP-modified gold nanoparticles cross-linked by copper(ii). Chemical Communications, 47(43), 11849. doi:10.1039/c1cc14772b es_ES
dc.description.references Li, H., Li, F., Han, C., Cui, Z., Xie, G., & Zhang, A. (2010). Highly sensitive and selective tryptophan colorimetric sensor based on 4,4-bipyridine-functionalized silver nanoparticles. Sensors and Actuators B: Chemical, 145(1), 194-199. doi:10.1016/j.snb.2009.11.062 es_ES
dc.description.references Sakai, R., Okade, S., Barasa, E. B., Kakuchi, R., Ziabka, M., Umeda, S., … Kakuchi, T. (2010). Efficient Colorimetric Anion Detection Based on Positive Allosteric System of Urea-Functionalized Poly(phenylacetylene) Receptor. Macromolecules, 43(18), 7406-7411. doi:10.1021/ma1016852 es_ES
dc.description.references Sakai, R., Sakai, N., Satoh, T., Li, W., Zhang, A., & Kakuchi, T. (2011). Strict Size Specificity in Colorimetric Anion Detection Based on Poly(phenylacetylene) Receptor Bearing Second Generation Lysine Dendrons. Macromolecules, 44(11), 4249-4257. doi:10.1021/ma200710r es_ES
dc.description.references Isaad, J., & Salaün, F. (2011). Functionalized poly (vinyl alcohol) polymer as chemodosimeter material for the colorimetric sensing of cyanide in pure water. Sensors and Actuators B: Chemical, 157(1), 26-33. doi:10.1016/j.snb.2011.03.022 es_ES
dc.description.references Isaad, J., & El Achari, A. (2011). Colorimetric sensing of cyanide anions in aqueous media based on functional surface modification of natural cellulose materials. Tetrahedron, 67(26), 4939-4947. doi:10.1016/j.tet.2011.04.061 es_ES
dc.description.references Yao, Z., Bai, H., Li, C., & Shi, G. (2010). Analyte-induced aggregation of conjugated polyelectrolytes: role of the charged moieties and its sensing application. Chemical Communications, 46(28), 5094. doi:10.1039/c002188a es_ES
dc.description.references Krishnamurthi, J., Ono, T., Amemori, S., Komatsu, H., Shinkai, S., & Sada, K. (2011). Thiourea-tagged poly(octadecyl acrylate) gels as fluoride and acetate responsive polymer gels through selective complexation. Chem. Commun., 47(5), 1571-1573. doi:10.1039/c0cc03256e es_ES
dc.description.references Vallejos, S., Estévez, P., García, F. C., Serna, F., de la Peña, J. L., & García, J. M. (2010). Putting to work organic sensing molecules in aqueous media: fluorene derivative-containing polymers as sensory materials for the colorimetric sensing of cyanide in water. Chemical Communications, 46(42), 7951. doi:10.1039/c0cc02143a es_ES
dc.description.references Liu, J., Liu, Y., Liu, Q., Li, C., Sun, L., & Li, F. (2011). Iridium(III) Complex-Coated Nanosystem for Ratiometric Upconversion Luminescence Bioimaging of Cyanide Anions. Journal of the American Chemical Society, 133(39), 15276-15279. doi:10.1021/ja205907y es_ES
dc.description.references Climent, E., Giménez, C., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., & Soto, J. (2011). Selective and sensitive chromo-fluorogenic sensing of anionic surfactants in water using functionalised silica nanoparticles. Chemical Communications, 47(24), 6873. doi:10.1039/c1cc11393c es_ES
dc.description.references Greaney, M. J., Nguyen, M. A., Chang, C.-C., Good, A., & Margerum, L. D. (2010). Indicator displacement assays for amino acids using Ni–NTA tethered to PAMAM dendrimers on controlled pore glass. Chemical Communications, 46(29), 5337. doi:10.1039/c0cc01293a es_ES
dc.description.references De Silva, A. P., Gunaratne, H. Q. N., Gunnlaugsson, T., Huxley, A. J. M., McCoy, C. P., Rademacher, J. T., & Rice, T. E. (1997). Signaling Recognition Events with Fluorescent Sensors and Switches. Chemical Reviews, 97(5), 1515-1566. doi:10.1021/cr960386p es_ES
dc.description.references Maity, D., Chakraborty, A., Gunupuru, R., & Paul, P. (2011). Calix[4]arene based molecular sensors with pyrene as fluoregenic unit: Effect of solvent in ion selectivity and colorimetric detection of fluoride. Inorganica Chimica Acta, 372(1), 126-135. doi:10.1016/j.ica.2011.01.053 es_ES
dc.description.references Kumar, M., Kumar, R., & Bhalla, V. (2010). ‘On–Off’ reversible switch for Fe3+ and F− mimicking XNOR logic function. Tetrahedron Letters, 51(42), 5559-5562. doi:10.1016/j.tetlet.2010.08.041 es_ES
dc.description.references Kumar, M., Kumar, R., & Bhalla, V. (2011). Optical Chemosensor for Ag+, Fe3+, and Cysteine: Information Processing at Molecular Level. Organic Letters, 13(3), 366-369. doi:10.1021/ol102543e es_ES
dc.description.references Ni, X., Zeng, X., Redshaw, C., & Yamato, T. (2011). Ratiometric Fluorescent Receptors for Both Zn2+and H2PO4–Ions Based on a Pyrenyl-Linked Triazole-Modified Homooxacalix[3]arene: A Potential Molecular Traffic Signal with an R-S Latch Logic Circuit. The Journal of Organic Chemistry, 76(14), 5696-5702. doi:10.1021/jo2007303 es_ES
dc.description.references Ghosh, K., Kar, D., & Chowdhury, P. R. (2011). Benzimidazolium-based simple host for fluorometric sensing of <mml:math altimg=«si1.gif» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:mrow><mml:msub><mml:mrow><mml:mtext>H</mml:mtext></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub><mml:msubsup><mml:mrow><mml:mtext>PO</mml:mtext></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow><mml:mrow><mml:mo>-</mml:mo></mml:mrow></mml:msubsup></mml:mrow></mml:math>, F−, <mml:math altimg=«si2.gif» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:mrow><mml:msubsup><mml:mrow><mml:mtext>PO</mml:mtext></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow><mml:mrow><mml:mn>3</mml:mn><mml:mo>-</mml:mo></mml:mrow></mml:msubsup></mml:mrow></mml:math> and AMP under different conditions. Tetrahedron Letters, 52(39), 5098-5103. doi:10.1016/j.tetlet.2011.07.110 es_ES
dc.description.references Zeng, Z., Torriero, A. A. J., Bond, A. M., & Spiccia, L. (2010). Fluorescent and Electrochemical Sensing of Polyphosphate Nucleotides by Ferrocene Functionalised with Two ZnII(TACN)(pyrene) Complexes. Chemistry - A European Journal, 16(30), 9154-9163. doi:10.1002/chem.201000882 es_ES
dc.description.references Thongkum, D., & Tuntulani, T. (2011). Fluoride-induced intermolecular excimer formation of bispyrenyl thioureas linked by polyethylene glycol chains. Tetrahedron, 67(42), 8102-8109. doi:10.1016/j.tet.2011.08.060 es_ES
dc.description.references Zhou, Y., Jung, J. Y., Jeon, H. R., Kim, Y., Kim, S.-J., & Yoon, J. (2011). A Novel Supermolecular Tetrameric Vanadate-Selective Colorimetric and «Off–On» Sensor with Pyrene Ligand. Organic Letters, 13(10), 2742-2745. doi:10.1021/ol200846a es_ES
dc.description.references Schmidt, F., Stadlbauer, S., & König, B. (2010). Zinc-cyclen coordination to UTP, TTP or pyrophosphate induces pyrene excimer emission. Dalton Transactions, 39(31), 7250. doi:10.1039/c0dt00001a es_ES
dc.description.references Xu, Z., Spring, D. R., & Yoon, J. (2011). Fluorescent Sensing and Discrimination of ATP and ADP Based on a Unique Sandwich Assembly of Pyrene-Adenine-Pyrene. Chemistry - An Asian Journal, 6(8), 2114-2122. doi:10.1002/asia.201100120 es_ES
dc.description.references Fu, T.-M., Wu, C.-Y., Cheng, C.-C., Yang, C.-R., & Yen, Y.-P. (2010). A novel highly selectively colorimetric and fluorescent chemosensor for pyrophosphate ion. Sensors and Actuators B: Chemical, 146(1), 171-176. doi:10.1016/j.snb.2010.02.043 es_ES
dc.description.references Gong, W., Bao, S., Wang, F., Ye, J., Ning, G., & Hiratani, K. (2011). Two-mode selective sensing of <mml:math altimg=«si1.gif» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:mrow><mml:msub><mml:mrow><mml:mtext>H</mml:mtext></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub><mml:mmultiscripts><mml:mrow><mml:mtext>PO</mml:mtext></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow><mml:none/><mml:none/><mml:mrow><mml:mo>-</mml:mo></mml:mrow></mml:mmultiscripts></mml:mrow></mml:math> controlled by intramolecular hydrogen bonding as the valve. Tetrahedron Letters, 52(5), 630-634. doi:10.1016/j.tetlet.2010.11.147 es_ES
dc.description.references Huang, X., Lu, Y., He, Y., & Chen, Z. (2010). A Metal-Macrocycle Complex as a Fluorescent Sensor for Biological Phosphate Ions in Aqueous Solution. European Journal of Organic Chemistry, 2010(10), 1921-1927. doi:10.1002/ejoc.200901328 es_ES
dc.description.references Lee, S. K., Kim, H., Jang, S., & Kang, J. (2011). Carboxylate selective anion receptor based on two anthracenes with malonamide spacer. Tetrahedron Letters, 52(16), 1977-1980. doi:10.1016/j.tetlet.2011.02.067 es_ES
dc.description.references Lee, S. K., & Kang, J. (2011). A new macrocyclic anion receptor utilizing amide, amine, and 9-anthracenyl hydrogens. Tetrahedron Letters, 52(40), 5192-5195. doi:10.1016/j.tetlet.2011.08.022 es_ES
dc.description.references Park, J. J., Kim, Y.-H., Kim, C., & Kang, J. (2011). Naked eye detection of fluoride and pyrophosphate with an anion receptor utilizing anthracene and nitrophenyl group as signaling group. Tetrahedron Letters, 52(21), 2759-2763. doi:10.1016/j.tetlet.2011.03.092 es_ES
dc.description.references Shahid, M., Srivastava, P., & Misra, A. (2011). An efficient naphthalimide based fluorescent dyad (ANPI) for F− and Hg2+ mimicking OR, XNOR and INHIBIT logic functions. New Journal of Chemistry, 35(8), 1690. doi:10.1039/c1nj20058e es_ES
dc.description.references Goswami, S., Das, N. K., Sen, D., Hazra, G., Goh, J. H., Sing, Y. C., & Fun, H.-K. (2011). Recognition of acids involved in Krebs cycle by 9-anthrylmethyl-di(6-acetylamino-2-picolyl)amine: a case of selective fluorescence enhancement for maleic acid. New Journal of Chemistry, 35(12), 2811. doi:10.1039/c1nj20339h es_ES
dc.description.references Yao, L.-Y., Qin, L., Xie, T.-Z., Li, Y.-Z., & Yu, S.-Y. (2011). Synthesis and Anion Sensing of Water-Soluble Metallomacrocycles. Inorganic Chemistry, 50(13), 6055-6062. doi:10.1021/ic200047t es_ES
dc.description.references Ahmed, N., Shirinfar, B., Geronimo, I., & Kim, K. S. (2011). Fluorescent Imidazolium-Based Cyclophane for Detection of Guanosine-5′-triphosphate and I–in Aqueous Solution of Physiological pH. Organic Letters, 13(20), 5476-5479. doi:10.1021/ol202183t es_ES
dc.description.references Kim, H. N., Moon, J. H., Kim, S. K., Kwon, J. Y., Jang, Y. J., Lee, J. Y., & Yoon, J. (2011). Fluorescent Sensing of Triphosphate Nucleotides via Anthracene Derivatives. The Journal of Organic Chemistry, 76(10), 3805-3811. doi:10.1021/jo2000836 es_ES
dc.description.references Jadhav, J. R., Bae, C. H., & Kim, H.-S. (2011). Fluorescence sensing of <mml:math altimg=«si1.gif» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:mrow><mml:msub><mml:mrow><mml:mtext>H</mml:mtext></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub><mml:mmultiscripts><mml:mrow><mml:mtext>PO</mml:mtext></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow><mml:none/><mml:none/><mml:mrow><mml:mo>-</mml:mo></mml:mrow></mml:mmultiscripts></mml:mrow></mml:math> by a imidazolium-based cholestane receptor. Tetrahedron Letters, 52(14), 1623-1627. doi:10.1016/j.tetlet.2011.01.107 es_ES
dc.description.references Bhuyan, M., Katayev, E., Stadlbauer, S., Nonaka, H., Ojida, A., Hamachi, I., & König, B. (2011). Rigid Luminescent Bis-Zinc(II)-Bis-Cyclen Complexes for the Detection of Phosphate Anions and Non-Covalent Protein Labeling in Aqueous Solution. European Journal of Organic Chemistry, 2011(15), 2807-2817. doi:10.1002/ejoc.201100103 es_ES
dc.description.references Zou, Q., Jin, J., Xu, B., Ding, L., & Tian, H. (2011). New photochromic chemosensors for Hg2+ and F−. Tetrahedron, 67(5), 915-921. doi:10.1016/j.tet.2010.12.019 es_ES
dc.description.references Jia, C., Wu, B., Li, S., Huang, X., & Yang, X.-J. (2010). Tetraureas versus Triureas in Sulfate Binding. Organic Letters, 12(24), 5612-5615. doi:10.1021/ol102221x es_ES
dc.description.references Wen, J., Geng, Z., Yin, Y., Zhang, Z., & Wang, Z. (2011). A Zn2+-specific turn-on fluorescent probe for ratiometric sensing of pyrophosphate in both water and blood serum. Dalton Trans., 40(9), 1984-1989. doi:10.1039/c0dt01262a es_ES
dc.description.references Mitra, A., Hinge, V. K., Mittal, A., Bhakta, S., Guionneau, P., & Rao, C. P. (2011). A Zinc-Sensing Glucose-Based Naphthyl Imino Conjugate as a Detecting Agent for Inorganic and Organic Phosphates, Including DNA. Chemistry - A European Journal, 17(29), 8044-8047. doi:10.1002/chem.201100734 es_ES
dc.description.references Ghosh, K., & Saha, I. (2011). A new ortho-phenylenediamine-based cleft for selective sensing of H2PO4− and ATP. New Journal of Chemistry, 35(7), 1397. doi:10.1039/c1nj20116f es_ES
dc.description.references Daniel Thangadurai, T., Chung, G., Kwon, O., Jin, D., & Lee, Y.-I. (2011). Differentiation of cis- and trans-isomers of the novel napthalene-aza receptor by naked-eye colorimetric anion sensing. Tetrahedron Letters, 52(48), 6465-6469. doi:10.1016/j.tetlet.2011.09.103 es_ES
dc.description.references Maeda, H., Bando, Y., Shimomura, K., Yamada, I., Naito, M., Nobusawa, K., … Kawai, T. (2011). Chemical-Stimuli-Controllable Circularly Polarized Luminescence from Anion-Responsive π-Conjugated Molecules. Journal of the American Chemical Society, 133(24), 9266-9269. doi:10.1021/ja203206g es_ES
dc.description.references Lu, Q.-S., Zhang, J., Jiang, L., Hou, J.-T., & Yu, X.-Q. (2010). Highly selective ratiometric estimation of fluoride ion based on a BINOL imidazolium cyclophane with dual-channel. Tetrahedron Letters, 51(33), 4395-4399. doi:10.1016/j.tetlet.2010.06.062 es_ES
dc.description.references Yang, L., Qin, S., Su, X., Yang, F., You, J., Hu, C., … Lan, J. (2010). 1,1′-Binaphthyl-based imidazolium chemosensors for highly selective recognition of tryptophan in aqueous solutions. Org. Biomol. Chem., 8(2), 339-348. doi:10.1039/b908540h es_ES
dc.description.references Kondo, S., Nagamine, M., Karasawa, S., Ishihara, M., Unno, M., & Yano, Y. (2011). Anion recognition by 2,2′-binaphthalene derivatives bearing urea and thiourea groups at 8- and 8′-positions by UV–vis and fluorescence spectroscopies. Tetrahedron, 67(5), 943-950. doi:10.1016/j.tet.2010.12.004 es_ES
dc.description.references Chen, C.-H., & Leung, M. (2011). The nature of 6,6′-bis(triphenylamine) substituted BINOL as chromophoric and fluorogenic hybrid chemosensor for selective fluoride detection. Tetrahedron, 67(21), 3924-3935. doi:10.1016/j.tet.2011.03.047 es_ES
dc.description.references Swamy, K. M. K., Jiten Singh, N., Yoo, J., Kwon, S. K., Chung, S.-Y., Lee, C.-H., & Yoon, J. (2009). Chiral binaphthyl receptors bearing imidazolium or urea groups for the recognition of anions. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 66(1-2), 107-111. doi:10.1007/s10847-009-9658-y es_ES
dc.description.references Roy, B., Rao, A. S., & Ahn, K. H. (2011). Mononuclear Zn(ii)- and Cu(ii)-complexes of a hydroxynaphthalene-derived dipicolylamine: fluorescent sensing behaviours toward pyrophosphate ions. Organic & Biomolecular Chemistry, 9(22), 7774. doi:10.1039/c1ob05999h es_ES
dc.description.references Chen, X., Wang, H., Jin, X., Feng, J., Wang, Y., & Lu, P. (2011). Palladium catalyzed bicyclization of 1,8-diiodonaphthalene and tertiary propargylic alcohols to phenalenones and their applications as fluorescent chemosensor for fluoride ions. Chemical Communications, 47(9), 2628. doi:10.1039/c0cc04875e es_ES
dc.description.references Park, C., & Hong, J.-I. (2010). A new fluorescent sensor for the detection of pyrophosphate based on a tetraphenylethylene moiety. Tetrahedron Letters, 51(15), 1960-1962. doi:10.1016/j.tetlet.2010.02.009 es_ES
dc.description.references Moreno, D., Cuevas, J. V., García-Herbosa, G., & Torroba, T. (2011). A fluorescent molecular ruler as a selective probe for ω-aminoacids. Chemical Communications, 47(11), 3183. doi:10.1039/c0cc05454b es_ES
dc.description.references Singh, N., & Jang, D. O. (2011). Tetrapodal receptors for selective fluorescent sensing of AMP: analyte-induced conformational restriction to persuade fluorescence enhancement. Tetrahedron Letters, 52(20), 2608-2610. doi:10.1016/j.tetlet.2011.03.096 es_ES
dc.description.references Wu, Y., Guo, H., Zhang, X., James, T. D., & Zhao, J. (2011). Chiral Donor Photoinduced-Electron-Transfer (d-PET) Boronic Acid Chemosensors for the Selective Recognition of Tartaric Acids, Disaccharides, and Ginsenosides. Chemistry - A European Journal, 17(27), 7632-7644. doi:10.1002/chem.201100033 es_ES
dc.description.references Siebler, D., Förster, C., & Heinze, K. (2010). Molecular Multi-Wavelength Optical Anion Sensors. European Journal of Inorganic Chemistry, 2010(4), 523-527. doi:10.1002/ejic.200901051 es_ES
dc.description.references Dey, K. R., Wong, B. M., & Hossain, M. A. (2010). Rational design of a macrocycle-based chemosensor for anions. Tetrahedron Letters, 51(9), 1329-1332. doi:10.1016/j.tetlet.2010.01.004 es_ES
dc.description.references Bhalla, V., Tejpal, R., & Kumar, M. (2012). New terphenyl based mercury ensemble for detection of acetate ions in a plasma like system. Dalton Trans., 41(2), 403-407. doi:10.1039/c1dt11106j es_ES
dc.description.references Szelke, H., Schübel, S., Harenberg, J., & Krämer, R. (2010). A fluorescent probe for the quantification of heparin in clinical samples with minimal matrix interference. Chemical Communications, 46(10), 1667. doi:10.1039/b917287d es_ES
dc.description.references Wang, D., Zhang, X., He, C., & Duan, C. (2010). Aminonaphthalimide-based imidazolium podands for turn-on fluorescence sensing of nucleoside polyphosphates. Organic & Biomolecular Chemistry, 8(13), 2923. doi:10.1039/c004148c es_ES
dc.description.references Moro, A. J., Cywinski, P. J., Körsten, S., & Mohr, G. J. (2010). An ATP fluorescent chemosensor based on a Zn(ii)-complexed dipicolylaminereceptor coupled with a naphthalimidechromophore. Chem. Commun., 46(7), 1085-1087. doi:10.1039/b919661g es_ES
dc.description.references Xiong, J., Sun, L., Liao, Y., Li, G.-N., Zuo, J.-L., & You, X.-Z. (2011). A new optical and electrochemical sensor for fluoride ion based on the functionalized boron–dipyrromethene dye with tetrathiafulvalene moiety. Tetrahedron Letters, 52(46), 6157-6161. doi:10.1016/j.tetlet.2011.09.042 es_ES
dc.description.references Cheng, T., Wang, T., Zhu, W., Chen, X., Yang, Y., Xu, Y., & Qian, X. (2011). Red-Emission Fluorescent Probe Sensing Cadmium and Pyrophosphate Selectively in Aqueous Solution. Organic Letters, 13(14), 3656-3659. doi:10.1021/ol201305d es_ES
dc.description.references Wang, J., Hou, Y., Li, C., Zhang, B., & Wang, X. (2011). Selectivity tune of fluoride ion sensing for phenolic OH-containing BODIPY dyes. Sensors and Actuators B: Chemical, 157(2), 586-593. doi:10.1016/j.snb.2011.05.027 es_ES
dc.description.references Kuchelmeister, H. Y., & Schmuck, C. (2011). Nucleotide Recognition in Water by a Guanidinium‐Based Artificial Tweezer Receptor. Chemistry – A European Journal, 17(19), 5311-5318. doi:10.1002/chem.201003393 es_ES
dc.description.references Szmytkowski, J., Brunet, S. M. K., Tripathy, U., O’Brien, J. A., Paige, M. F., & Steer, R. P. (2011). Photophysics and halide quenching of Soret-excited ZnTPPS4− in aqueous media. Chemical Physics Letters, 501(4-6), 278-282. doi:10.1016/j.cplett.2010.11.010 es_ES
dc.description.references Dorazco-González, A., Höpfl, H., Medrano, F., & Yatsimirsky, A. K. (2010). Recognition of Anions and Neutral Guests by Dicationic Pyridine-2,6-dicarboxamide Receptors. The Journal of Organic Chemistry, 75(7), 2259-2273. doi:10.1021/jo100037m es_ES
dc.description.references Swinburne, A. N., Paterson, M. J., Beeby, A., & Steed, J. W. (2010). A quinolinium-derived turn-off fluorescent anion sensor. Organic & Biomolecular Chemistry, 8(5), 1010. doi:10.1039/b919821k es_ES
dc.description.references Amendola, V., Fabbrizzi, L., & Monzani, E. (2004). A Concave Fluorescent Sensor for Anions Based on 6-Methoxy-1-methylquinolinium. Chemistry - A European Journal, 10(1), 76-82. doi:10.1002/chem.200305338 es_ES
dc.description.references Jordan, L. M., Boyle, P. D., Sargent, A. L., & Allen, W. E. (2010). Binding of Carboxylic Acids by Fluorescent Pyridyl Ureas. The Journal of Organic Chemistry, 75(24), 8450-8456. doi:10.1021/jo101730w es_ES
dc.description.references Bazzicalupi, C., Bencini, A., Puccioni, S., Valtancoli, B., Gratteri, P., Garau, A., & Lippolis, V. (2012). Selective binding and fluorescence sensing of diphosphate in H2OviaZn2+-induced allosteric regulation of the receptor structure. Chem. Commun., 48(1), 139-141. doi:10.1039/c1cc15934h es_ES
dc.description.references Carroll, C. N., Coombs, B. A., McClintock, S. P., Johnson II, C. A., Berryman, O. B., Johnson, D. W., & Haley, M. M. (2011). Anion-dependent fluorescence in bis(anilinoethynyl)pyridine derivatives: switchable ON–OFF and OFF–ON responses. Chemical Communications, 47(19), 5539. doi:10.1039/c1cc10947b es_ES
dc.description.references Wang, X., Zhang, C., Feng, L., & Zhang, L. (2011). Screening iodide anion with selective fluorescent chemosensor. Sensors and Actuators B: Chemical, 156(1), 463-466. doi:10.1016/j.snb.2011.04.023 es_ES
dc.description.references Koteeswari, R., Ashokkumar, P., Ramakrishnan, V. T., Malar, E. J. P., & Ramamurthy, P. (2010). Unprecedented formation of an N-benzamidobisthiourea derivative and its role in the formation of a new CT state specific towards fluoride ion. Chemical Communications, 46(19), 3268. doi:10.1039/b926320a es_ES
dc.description.references Ravikumar, I., & Ghosh, P. (2011). Zinc(II) and PPi Selective Fluorescence OFF–ON–OFF Functionality of a Chemosensor in Physiological Conditions. Inorganic Chemistry, 50(10), 4229-4231. doi:10.1021/ic200314t es_ES
dc.description.references Goswami, S., Sen, D., & Das, N. K. (2010). Metal ion based chiral fluorescence sensor selective for dihydrogenphosphate. Tetrahedron Letters, 51(51), 6707-6710. doi:10.1016/j.tetlet.2010.10.034 es_ES
dc.description.references He, C., Qian, X., Xu, Y., Yang, C., Yin, L., & Zhu, W. (2011). A ratiometric fluorescent probe for oxalate based on alkyne-conjugated carboxamidoquinolines in aqueous solution and imaging in living cells. Dalton Trans., 40(5), 1034-1037. doi:10.1039/c0dt01364a es_ES
dc.description.references Do-Thanh, C.-L., Rowland, M. M., & Best, M. D. (2011). Fluorescent bis-cyclen tweezer receptors for inositol (1,4,5)-trisphosphate. Tetrahedron, 67(21), 3803-3808. doi:10.1016/j.tet.2011.03.092 es_ES
dc.description.references Alfonso, M., Espinosa, A., Tárraga, A., & Molina, P. (2011). A Simple but Effective Dual Redox and Fluorescent Ion Pair Receptor Based on a Ferrocene−Imidazopyrene Dyad. Organic Letters, 13(8), 2078-2081. doi:10.1021/ol2004935 es_ES
dc.description.references Chae, M. K., Suk, J., & Jeong, K.-S. (2010). A catenated anion receptor based on indolocarbazole. Tetrahedron Letters, 51(32), 4240-4242. doi:10.1016/j.tetlet.2010.06.023 es_ES
dc.description.references Saha, S., Ghosh, A., Mahato, P., Mishra, S., Mishra, S. K., Suresh, E., … Das, A. (2010). Specific Recognition and Sensing of CN−in Sodium Cyanide Solution. Organic Letters, 12(15), 3406-3409. doi:10.1021/ol101281x es_ES
dc.description.references Abraham, Y., Salman, H., Suwinska, K., & Eichen, Y. (2011). Cyclo[2]benzimidazole: luminescence turn-on sensing of anions. Chemical Communications, 47(21), 6087. doi:10.1039/c1cc10995b es_ES
dc.description.references Zapata, F., Caballero, A., Tárraga, A., & Molina, P. (2010). Ferrocene-Substituted Nitrogen-Rich Ring Systems as Multichannel Molecular Chemosensors for Anions in Aqueous Environment. The Journal of Organic Chemistry, 75(1), 162-169. doi:10.1021/jo9023446 es_ES
dc.description.references Alfonso, M., Tárraga, A., & Molina, P. (2011). A Bisferrocene-Benzobisimidazole Triad as a Multichannel Ditopic Receptor for Selective Sensing of Hydrogen Sulfate and Mercury Ions. Organic Letters, 13(24), 6432-6435. doi:10.1021/ol202723d es_ES
dc.description.references Curiel, D., Más-Montoya, M., Sánchez, G., Orenes, R. A., Molina, P., & Tárraga, A. (2010). A new building block for anion supramolecular chemistry. Study of carbazolocarbazole as anion receptor. Organic & Biomolecular Chemistry, 8(21), 4811. doi:10.1039/c0ob00522c es_ES
dc.description.references Bejger, C., Park, J. S., Silver, E. S., & Sessler, J. L. (2010). Tetrathiafulvalene diindolylquinoxaline: a dual signaling anion receptor with phosphate selectivity. Chemical Communications, 46(41), 7745. doi:10.1039/c0cc02934c es_ES
dc.description.references Helal, A., & Kim, H.-S. (2010). Thiazole-based chemosensor III: synthesis and fluorescence sensing of CH3CO2− based on inhibition of ESIPT. Tetrahedron, 66(35), 7097-7103. doi:10.1016/j.tet.2010.07.007 es_ES
dc.description.references Lee, D. Y., Singh, N., Kim, M. J., & Jang, D. O. (2011). Chromogenic and Fluorescent Recognition of Iodide with a Benzimidazole-Based Tripodal Receptor. Organic Letters, 13(12), 3024-3027. doi:10.1021/ol2008846 es_ES
dc.description.references Raad, F. S., El-Ballouli, A. O., Moustafa, R. M., Al-Sayah, M. H., & Kaafarani, B. R. (2010). Novel quinoxalinophenanthrophenazine-based molecules as sensors for anions: synthesis and binding investigations. Tetrahedron, 66(16), 2944-2952. doi:10.1016/j.tet.2010.02.075 es_ES
dc.description.references Tumir, L.-M., Grabar, M., Tomić, S., & Piantanida, I. (2010). The interactions of bis-phenanthridinium–nucleobase conjugates with nucleotides: adenine-conjugate recognizes UMP in aqueous medium. Tetrahedron, 66(13), 2501-2513. doi:10.1016/j.tet.2010.01.063 es_ES
dc.description.references Rathikrishnan, K. R., Indirapriyadharshini, V. K., Ramakrishna, S., & Murugan, R. (2011). 4,7-Diaryl indole-based fluorescent chemosensor for iodide ions. Tetrahedron, 67(22), 4025-4030. doi:10.1016/j.tet.2011.04.039 es_ES
dc.description.references Goswami, S., Hazra, A., & Das, M. K. (2010). Selenodiazole-fused diacetamidopyrimidine, a selective fluorescence sensor for aliphatic monocarboxylates. Tetrahedron Letters, 51(25), 3320-3323. doi:10.1016/j.tetlet.2010.04.085 es_ES
dc.description.references Singh, P., Kaur, J., & Holzer, W. (2010). Acridone based Cu2+–F−/F−–Cu2+ responsive ON/OFF key pad. Sensors and Actuators B: Chemical, 150(1), 50-56. doi:10.1016/j.snb.2010.07.043 es_ES
dc.description.references Kaur, J., & Singh, P. (2011). ATP selective acridone based fluorescent probes for monitoring of metabolic events. Chemical Communications, 47(15), 4472. doi:10.1039/c1cc10253b es_ES
dc.description.references Chen, W.-H., Xing, Y., & Pang, Y. (2011). A Highly Selective Pyrophosphate Sensor Based on ESIPT Turn-On in Water. Organic Letters, 13(6), 1362-1365. doi:10.1021/ol200054w es_ES
dc.description.references Das, P., Ghosh, A., Kesharwani, M. K., Ramu, V., Ganguly, B., & Das, A. (2011). ZnII-2,2′:6′,2″-Terpyridine-Based Complex as Fluorescent Chemosensor for PPi, AMP and ADP. European Journal of Inorganic Chemistry, 2011(20), 3050-3058. doi:10.1002/ejic.201100125 es_ES
dc.description.references Li, H., Lalancette, R. A., & Jäkle, F. (2011). Turn-on fluorescence response upon anion binding to dimesitylboryl-functionalized quaterthiophene. Chemical Communications, 47(33), 9378. doi:10.1039/c1cc13287c es_ES
dc.description.references Raposo, M. M. M., García-Acosta, B., Ábalos, T., Calero, P., Martínez-Máñez, R., Ros-Lis, J. V., & Soto, J. (2010). Synthesis and Study of the Use of Heterocyclic Thiosemicarbazones As Signaling Scaffolding for the Recognition of Anions. The Journal of Organic Chemistry, 75(9), 2922-2933. doi:10.1021/jo100082k es_ES
dc.description.references Shao, N., Jin, J., Wang, H., Zheng, J., Yang, R., Chan, W., & Abliz, Z. (2010). Design of Bis-spiropyran Ligands as Dipolar Molecule Receptors and Application to in Vivo Glutathione Fluorescent Probes. Journal of the American Chemical Society, 132(2), 725-736. doi:10.1021/ja908215t es_ES
dc.description.references Kurishita, Y., Kohira, T., Ojida, A., & Hamachi, I. (2010). Rational Design of FRET-Based Ratiometric Chemosensors for in Vitro and in Cell Fluorescence Analyses of Nucleoside Polyphosphates. Journal of the American Chemical Society, 132(38), 13290-13299. doi:10.1021/ja103615z es_ES
dc.description.references Kim, H. J., Lee, J. H., & Hong, J.-I. (2011). Highly sensitive chemosensor for detection of PPi with improved detection limit. Tetrahedron Letters, 52(38), 4944-4946. doi:10.1016/j.tetlet.2011.07.067 es_ES
dc.description.references Jung, S. O., Ahn, J. Y., Kim, S., Yi, S., Kim, M. H., Jang, H. H., … Han, M. S. (2010). Fluorescein derivative-based, selective and sensitive chemosensor for NADH. Tetrahedron Letters, 51(29), 3775-3778. doi:10.1016/j.tetlet.2010.05.044 es_ES
dc.description.references Yang, Y.-K., Shim, S., & Tae, J. (2010). Rhodamine–sugar based turn-on fluorescent probe for the detection of cysteine and homocysteine in water. Chemical Communications, 46(41), 7766. doi:10.1039/c0cc02381g es_ES
dc.description.references Kaewtong, C., Noiseephum, J., Uppa, Y., Morakot, N., Morakot, N., Wanno, B., … Pulpoka, B. (2010). A reversible Em-FRET rhodamine-based chemosensor for carboxylate anions using a ditopic receptor strategy. New Journal of Chemistry, 34(6), 1104. doi:10.1039/b9nj00594c es_ES
dc.description.references Sasakura, K., Hanaoka, K., Shibuya, N., Mikami, Y., Kimura, Y., Komatsu, T., … Nagano, T. (2011). Development of a Highly Selective Fluorescence Probe for Hydrogen Sulfide. Journal of the American Chemical Society, 133(45), 18003-18005. doi:10.1021/ja207851s es_ES
dc.description.references Xu, Z., Song, N. R., Moon, J. H., Lee, J. Y., & Yoon, J. (2011). Bis- and tris-naphthoimidazolium derivatives for the fluorescent recognition of ATP and GTP in 100% aqueous solution. Organic & Biomolecular Chemistry, 9(24), 8340. doi:10.1039/c1ob06344h es_ES
dc.description.references Xu, Z., Singh, N. J., Kim, S. K., Spring, D. R., Kim, K. S., & Yoon, J. (2010). Induction-Driven Stabilization of the Anion-π Interaction in Electron-Rich Aromatics as the Key to Fluoride Inclusion in Imidazolium-Cage Receptors. Chemistry - A European Journal, 17(4), 1163-1170. doi:10.1002/chem.201002105 es_ES
dc.description.references Chakraborty, A., Gunupuru, R., Maity, D., Patra, S., Suresh, E., & Paul, P. (2010). Synthesis and anion-sensing property of a family of Ru(II)-based receptors containing functionalized polypyridine as binding site. Inorganic Chemistry Communications, 13(12), 1522-1526. doi:10.1016/j.inoche.2010.09.002 es_ES
dc.description.references Patra, S., Boricha, V. P., Sreenidhi, K. R., Suresh, E., & Paul, P. (2010). Luminescent metalloreceptors with pendant macrocyclic ionophore: Synthesis, characterization, electrochemistry and ion-binding study. Inorganica Chimica Acta, 363(8), 1639-1648. doi:10.1016/j.ica.2010.01.003 es_ES
dc.description.references Saha, D., Das, S., Bhaumik, C., Dutta, S., & Baitalik, S. (2010). Monometallic and Bimetallic Ruthenium(II) Complexes Derived from 4,5-Bis(benzimidazol-2-yl)imidazole (H3Imbzim) and 2,2′-Bipyridine as Colorimetric Sensors for Anions: Synthesis, Characterization, and Binding Studies. Inorganic Chemistry, 49(5), 2334-2348. doi:10.1021/ic9022272 es_ES
dc.description.references Wu, B., Yang, J., Huang, X., Li, S., Jia, C., Yang, X.-J., … Janiak, C. (2011). Anion binding by metallo-receptors of 5,5′-dicarbamate-2,2′-bipyridine ligands. Dalton Transactions, 40(21), 5687. doi:10.1039/c0dt01561j es_ES
dc.description.references Das, S., Saha, D., Bhaumik, C., Dutta, S., & Baitalik, S. (2010). Ru(ii) and Os(ii) mixed-chelates derived from imidazole-4,5-dicarboxylic acid and 2,2′-bipyridine as colorimetric sensors for anions: synthesis, characterization and binding studies. Dalton Transactions, 39(17), 4162. doi:10.1039/b924561h es_ES
dc.description.references Vajpayee, V., Song, Y. H., Lee, M. H., Kim, H., Wang, M., Stang, P. J., & Chi, K. (2011). Self‐Assembled Arene–Ruthenium‐Based Rectangles for the Selective Sensing of Multi‐Carboxylate Anions. Chemistry – A European Journal, 17(28), 7837-7844. doi:10.1002/chem.201100242 es_ES
dc.description.references Castillo, C. E., Davies, D. L., Klair, A.-K. D., Singh, K., & Singh, S. (2012). Luminescent iridium complexes for detection of molybdate. Dalton Trans., 41(2), 628-635. doi:10.1039/c1dt11360g es_ES
dc.description.references Yeung, M. C.-L., & Yam, V. W.-W. (2011). NIR-Emissive Alkynylplatinum(II) Terpyridyl Complex as a Turn-On Selective Probe for Heparin Quantification by Induced Helical Self-Assembly Behaviour. Chemistry - A European Journal, 17(43), 11987-11990. doi:10.1002/chem.201101762 es_ES
dc.description.references Song, C., Ye, Z., Wang, G., Yuan, J., & Guan, Y. (2010). A Lanthanide-Complex-Based Ratiometric Luminescent Probe Specific for Peroxynitrite. Chemistry - A European Journal, 16(22), 6464-6472. doi:10.1002/chem.201000528 es_ES
dc.description.references DOSSANTOS, C., HARTE, A., QUINN, S., & GUNNLAUGSSON, T. (2008). Recent developments in the field of supramolecular lanthanide luminescent sensors and self-assemblies. Coordination Chemistry Reviews, 252(23-24), 2512-2527. doi:10.1016/j.ccr.2008.07.018 es_ES
dc.description.references Esplin, T. L., Cable, M. L., Gray, H. B., & Ponce, A. (2010). Terbium-Macrocycle Complexes as Chemical Sensors: Detection of an Aspirin Metabolite in Urine Using a Salicylurate-Specific Receptor Site. Inorganic Chemistry, 49(10), 4643-4647. doi:10.1021/ic1003066 es_ES
dc.description.references Tripier, R., Platas-Iglesias, C., Boos, A., Morfin, J.-F., & Charbonnière, L. (2010). Towards Fluoride Sensing with Positively Charged Lanthanide Complexes. European Journal of Inorganic Chemistry, 2010(18), 2735-2745. doi:10.1002/ejic.200901045 es_ES
dc.description.references Shinoda, S., Yano, K., & Tsukube, H. (2010). Combinatorial screening of a lanthanide complex library for luminescence sensing of amino acids. Chemical Communications, 46(18), 3110. doi:10.1039/c000542h es_ES
dc.description.references Wang, H.-P., Li, H.-G., Lu, G.-N., Tang, N., Liu, W.-S., & Tang, Y. (2010). Anion-responsive luminescent Eu3+ complexes with ring-like rigid quinoline–amide ligands. Inorganic Chemistry Communications, 13(7), 882-886. doi:10.1016/j.inoche.2010.04.020 es_ES
dc.description.references Lee, J. H., Jeong, A. R., Shin, I.-S., Kim, H.-J., & Hong, J.-I. (2010). Fluorescence Turn-On Sensor for Cyanide Based on a Cobalt(II)−Coumarinylsalen Complex. Organic Letters, 12(4), 764-767. doi:10.1021/ol902852g es_ES
dc.description.references Rochat, S., & Severin, K. (2011). A simple fluorescence assay for the detection of fluoride in water at neutral pH. Chemical Communications, 47(15), 4391. doi:10.1039/c1cc10498e es_ES
dc.description.references Villamil-Ramos, R., & Yatsimirsky, A. K. (2011). Selective fluorometric detection of pyrophosphate by interaction with alizarin red S–dimethyltin(iv) complex. Chemical Communications, 47(9), 2694. doi:10.1039/c0cc05346e es_ES
dc.description.references Zhou, X.-B., Chan, W.-H., & Lee, A. W. M. (2011). Ratiometric fluorescence sensor for detection of polyphosphate anions by sensor-ensemble method in aqueous solution. Tetrahedron Letters, 52(42), 5431-5434. doi:10.1016/j.tetlet.2011.07.090 es_ES
dc.description.references Mitra, A., Chinta, J. P., & Rao, C. P. (2010). 1-(d-Glucopyranosyl-2′-deoxy-2′-iminomethyl)-2-hydroxybenzene as chemosensor for aromatic amino acids by switch-on fluorescence. Tetrahedron Letters, 51(1), 139-142. doi:10.1016/j.tetlet.2009.10.105 es_ES
dc.description.references Ghosh, K., Saha, I., Masanta, G., Wang, E. B., & Parish, C. A. (2010). Triphenylamine-based receptor for selective recognition of dicarboxylates. Tetrahedron Letters, 51(2), 343-347. doi:10.1016/j.tetlet.2009.11.021 es_ES
dc.description.references Dhara, K., Saha, U. C., Dan, A., Sarkar, S., Manassero, M., & Chattopadhyay, P. (2010). A new water–soluble copper(ii) complex as a selective fluorescent sensor for azide ion. Chemical Communications, 46(10), 1754. doi:10.1039/b919937c es_ES
dc.description.references Gassensmith, J. J., Matthys, S., Lee, J.-J., Wojcik, A., Kamat, P. V., & Smith, B. D. (2010). Squaraine Rotaxane as a Reversible Optical Chloride Sensor. Chemistry - A European Journal, 16(9), 2916-2921. doi:10.1002/chem.200902547 es_ES
dc.description.references Späth, A., & König, B. (2010). Ditopic crown ether–guanidinium ion receptors for the molecular recognition of amino acids and small peptides. Tetrahedron, 66(10), 1859-1873. doi:10.1016/j.tet.2010.01.028 es_ES
dc.description.references Zhao, Y., Yang, Y. C., Chi, S. M., Shi, H., Zhao, Y., Zhu, H. Y., … Wang, Y. F. (2010). Fluorescence Sensing and Selective Binding of a Novel 4,4′-Sulfonyldianiline-Bridged Bis(β-cyclodextrin) for Bile Salts. Helvetica Chimica Acta, 93(5), 999-1011. doi:10.1002/hlca.200900327 es_ES
dc.description.references Taylor, S. D., Howard, W., Kaval, N., Hart, R., Krause, J. A., & Connick, W. B. (2010). Solid-state materials for anion sensing in aqueous solution: highly selective colorimetric and luminescence-based detection of perchlorate using a platinum(ii) salt. Chemical Communications, 46(7), 1070. doi:10.1039/b923278h es_ES
dc.description.references Kumar Pathak, R., Tabbasum, K., Kumar Hinge, V., & Pulla Rao, C. (2011). Selective Recognition of Cysteine in Its Free and Protein-Bound States by the Zn2+ Complex of a Triazole-Based Calix[4]arene Conjugate. Chemistry - A European Journal, 17(50), 13999-14003. doi:10.1002/chem.201102791 es_ES
dc.description.references Zhang, S., & Glass, T. E. (2010). An indicator displacement assay with independent dual wavelength emission. Tetrahedron Letters, 51(1), 112-114. doi:10.1016/j.tetlet.2009.10.097 es_ES
dc.description.references Divya, K. P., Sreejith, S., Balakrishna, B., Jayamurthy, P., Anees, P., & Ajayaghosh, A. (2010). A Zn2+-specific fluorescent molecular probe for the selective detection of endogenous cyanide in biorelevant samples. Chemical Communications, 46(33), 6069. doi:10.1039/c0cc01159b es_ES
dc.description.references Lu, W., Jiang, H., Hu, F., Jiang, L., & Shen, Z. (2011). A novel chemosensor based on Fe(III)-complexation for selective recognition and rapid detection of fluoride anions in aqueous media. Tetrahedron, 67(41), 7909-7912. doi:10.1016/j.tet.2011.08.035 es_ES
dc.description.references Lee, J. H., Jeong, A. R., Jung, J.-H., Park, C.-M., & Hong, J.-I. (2011). A Highly Selective and Sensitive Fluorescence Sensing System for Distinction between Diphosphate and Nucleoside Triphosphates. The Journal of Organic Chemistry, 76(2), 417-423. doi:10.1021/jo1017102 es_ES
dc.description.references Butler, S. J., & Jolliffe, K. A. (2011). Synthesis of a family of cyclic peptide-based anion receptors. Organic & Biomolecular Chemistry, 9(9), 3471. doi:10.1039/c0ob01072c es_ES
dc.description.references Wang, F., Wu, J., Zhuang, X., Zhang, W., Liu, W., Wang, P., & Wu, S. (2010). A highly selective fluorescent sensor for fluoride in aqueous solution based on the inhibition of excited-state intramolecular proton transfer. Sensors and Actuators B: Chemical, 146(1), 260-265. doi:10.1016/j.snb.2010.02.007 es_ES
dc.description.references Gaidamauskas, E., Crans, D. C., Parker, H., Saejueng, K., Kashemirov, B. A., & McKenna, C. E. (2011). Quantification of foscarnet with chromogenic and fluorogenic chemosensors: indicator displacement assays based on metal ion coordination with a catechol ligand moiety. New Journal of Chemistry, 35(12), 2877. doi:10.1039/c1nj20460b es_ES
dc.description.references Saeed, M. A., Powell, D. R., & Hossain, M. A. (2010). Fluorescent detection of phosphate anion by a highly selective chemosensor in water. Tetrahedron Letters, 51(37), 4904-4907. doi:10.1016/j.tetlet.2010.07.078 es_ES
dc.description.references Chen, X., Nam, S.-W., Kim, G.-H., Song, N., Jeong, Y., Shin, I., … Yoon, J. (2010). A near-infrared fluorescent sensor for detection of cyanide in aqueous solution and its application for bioimaging. Chemical Communications, 46(47), 8953. doi:10.1039/c0cc03398g es_ES
dc.description.references Xu, Z., Pan, J., Spring, D. R., Cui, J., & Yoon, J. (2010). Ratiometric fluorescent and colorimetric sensors for Cu2+ based on 4,5-disubstituted-1,8-naphthalimide and sensing cyanide via Cu2+ displacement approach. Tetrahedron, 66(9), 1678-1683. doi:10.1016/j.tet.2010.01.008 es_ES
dc.description.references Cao, X., Lin, W., & He, L. (2011). A Near-Infrared Fluorescence Turn-On Sensor for Sulfide Anions. Organic Letters, 13(17), 4716-4719. doi:10.1021/ol201932c es_ES
dc.description.references Amendola, V., Bergamaschi, G., Buttafava, A., Fabbrizzi, L., & Monzani, E. (2010). Recognition and Sensing of Nucleoside Monophosphates by a Dicopper(II) Cryptate. Journal of the American Chemical Society, 132(1), 147-156. doi:10.1021/ja9046262 es_ES
dc.description.references Jung, H. S., Han, J. H., Kim, Z. H., Kang, C., & Kim, J. S. (2011). Coumarin-Cu(II) Ensemble-Based Cyanide Sensing Chemodosimeter. Organic Letters, 13(19), 5056-5059. doi:10.1021/ol2018856 es_ES
dc.description.references Gee, H.-C., Lee, C.-H., Jeong, Y.-H., & Jang, W.-D. (2011). Highly sensitive and selective cyanide detection via Cu2+ complex ligand exchange. Chemical Communications, 47(43), 11963. doi:10.1039/c1cc14963f es_ES
dc.description.references Riis-Johannessen, T., Schenk, K., & Severin, K. (2010). Turn-Off-and-On: Chemosensing Ensembles for Sensing Chloride in Water by Fluorescence Spectroscopy. Inorganic Chemistry, 49(20), 9546-9553. doi:10.1021/ic1012878 es_ES
dc.description.references Ruan, Y.-B., Li, A.-F., Zhao, J.-S., Shen, J.-S., & Jiang, Y.-B. (2010). Specific Hg2+-mediated perylene bisimide aggregation for highly sensitive detection of cysteine. Chemical Communications, 46(27), 4938. doi:10.1039/c0cc00630k es_ES
dc.description.references Wu, J., Sheng, R., Liu, W., Wang, P., Ma, J., Zhang, H., & Zhuang, X. (2011). Reversible Fluorescent Probe for Highly Selective and Sensitive Detection of Mercapto Biomolecules. Inorganic Chemistry, 50(14), 6543-6551. doi:10.1021/ic200181p es_ES
dc.description.references Ma, B., Zeng, F., Zheng, F., & Wu, S. (2011). A Fluorescence Turn-on Sensor for Iodide Based on a Thymine-HgII-Thymine Complex. Chemistry - A European Journal, 17(52), 14844-14850. doi:10.1002/chem.201102024 es_ES
dc.description.references Luo, C., Zhou, Q., Zhang, B., & Wang, X. (2011). A new squaraine and Hg2+-based chemosensor with tunable measuring range for thiol-containing amino acids. New J. Chem., 35(1), 45-48. doi:10.1039/c0nj00696c es_ES
dc.description.references Gao, J., Riis-Johannessen, T., Scopelliti, R., Qian, X., & Severin, K. (2010). A fluorescent sensor for pyrophosphate based on a Pd(ii) complex. Dalton Transactions, 39(30), 7114. doi:10.1039/c0dt00434k es_ES
dc.description.references Wang, H., Xue, L., & Jiang, H. (2011). Ratiometric Fluorescent Sensor for Silver Ion and Its Resultant Complex for Iodide Anion in Aqueous Solution. Organic Letters, 13(15), 3844-3847. doi:10.1021/ol2013632 es_ES
dc.description.references Sokkalingam, P., Yoo, J., Hwang, H., Lee, P. H., Jung, Y. M., & Lee, C.-H. (2011). Salt (LiF) Regulated Fluorescence Switching. European Journal of Organic Chemistry, 2011(16), 2911-2915. doi:10.1002/ejoc.201100359 es_ES
dc.description.references Quiñonero, D., López, K. A., Deyà, P. M., Piña, M. N., & Morey, J. (2011). Synthetic Tripodal Squaramido-Based Receptors for the Complexation of Antineoplastic Folates in Water. European Journal of Organic Chemistry, 2011(31), 6187-6194. doi:10.1002/ejoc.201100855 es_ES
dc.description.references Huang, S. T., Shi, Y., Li, N. B., & Luo, H. Q. (2012). Sensitive turn-on fluorescent detection oftartrazine based on fluorescence resonance energy transfer. Chem. Commun., 48(5), 747-749. doi:10.1039/c1cc15959c es_ES
dc.description.references Buckland, D., Bhosale, S. V., & Langford, S. J. (2011). A chemodosimer based on a core-substituted naphthalene diimide for fluoride ion detection. Tetrahedron Letters, 52(16), 1990-1992. doi:10.1016/j.tetlet.2011.02.080 es_ES
dc.description.references Lu, H., Wang, Q., Li, Z., Lai, G., Jiang, J., & Shen, Z. (2011). A specific chemodosimeter for fluoride ion based on a pyrene derivative with trimethylsilylethynyl groups. Organic & Biomolecular Chemistry, 9(12), 4558. doi:10.1039/c1ob05164d es_ES
dc.description.references Sokkalingam, P., & Lee, C.-H. (2011). Highly Sensitive Fluorescence «Turn-On» Indicator for Fluoride Anion with Remarkable Selectivity in Organic and Aqueous Media. The Journal of Organic Chemistry, 76(10), 3820-3828. doi:10.1021/jo200138t es_ES
dc.description.references Zhu, B., Yuan, F., Li, R., Li, Y., Wei, Q., Ma, Z., … Zhang, X. (2011). A highly selective colorimetric and ratiometric fluorescent chemodosimeter for imaging fluoride ions in living cells. Chemical Communications, 47(25), 7098. doi:10.1039/c1cc11308a es_ES
dc.description.references Cao, X., Lin, W., Yu, Q., & Wang, J. (2011). Ratiometric Sensing of Fluoride Anions Based on a BODIPY-Coumarin Platform. Organic Letters, 13(22), 6098-6101. doi:10.1021/ol202595t es_ES
dc.description.references Bhalla, V., Singh, H., & Kumar, M. (2010). Facile Cyclization of Terphenyl to Triphenylene: A New Chemodosimeter for Fluoride Ions. Organic Letters, 12(3), 628-631. doi:10.1021/ol902861b es_ES
dc.description.references Hu, R., Feng, J., Hu, D., Wang, S., Li, S., Li, Y., & Yang, G. (2010). A Rapid Aqueous Fluoride Ion Sensor with Dual Output Modes. Angewandte Chemie International Edition, 49(29), 4915-4918. doi:10.1002/anie.201000790 es_ES
dc.description.references Bozdemir, O. A., Sozmen, F., Buyukcakir, O., Guliyev, R., Cakmak, Y., & Akkaya, E. U. (2010). Reaction-Based Sensing of Fluoride Ions Using Built-In Triggers for Intramolecular Charge Transfer and Photoinduced Electron Transfer. Organic Letters, 12(7), 1400-1403. doi:10.1021/ol100172w es_ES
dc.description.references Rao, M. R., Mobin, S. M., & Ravikanth, M. (2010). Boron–dipyrromethene based specific chemodosimeter for fluoride ion. Tetrahedron, 66(9), 1728-1734. doi:10.1016/j.tet.2009.12.039 es_ES
dc.description.references Fu, L., Jiang, F.-L., Fortin, D., Harvey, P. D., & Liu, Y. (2011). A reaction-based chromogenic and fluorescent chemodosimeter for fluoride anions. Chemical Communications, 47(19), 5503. doi:10.1039/c1cc10784d es_ES
dc.description.references Zhang, J. F., Lim, C. S., Bhuniya, S., Cho, B. R., & Kim, J. S. (2011). A Highly Selective Colorimetric and Ratiometric Two-Photon Fluorescent Probe for Fluoride Ion Detection. Organic Letters, 13(5), 1190-1193. doi:10.1021/ol200072e es_ES
dc.description.references Bhalla, V., Tejpal, R., & Kumar, M. (2011). Terphenyl based fluorescent chemosensor for Cu2+ and F− ions employing excited state intramolecular proton transfer. Tetrahedron, 67(6), 1266-1271. doi:10.1016/j.tet.2010.11.083 es_ES
dc.description.references Schmidt, H. C., Reuter, L. G., Hamacek, J., & Wenger, O. S. (2011). Multistage Complexation of Fluoride Ions by a Fluorescent Triphenylamine Bearing Three Dimesitylboryl Groups: Controlling Intramolecular Charge Transfer. The Journal of Organic Chemistry, 76(21), 9081-9085. doi:10.1021/jo2019152 es_ES
dc.description.references Fu, G.-L., Pan, H., Zhao, Y.-H., & Zhao, C.-H. (2011). Solid-state emissive triarylborane-based BODIPY dyes: Photophysical properties and fluorescent sensing for fluoride and cyanide ions. Organic & Biomolecular Chemistry, 9(23), 8141. doi:10.1039/c1ob05959a es_ES
dc.description.references Zhao, Y.-H., Pan, H., Fu, G.-L., Lin, J.-M., & Zhao, C.-H. (2011). A highly emissive cruciform triarylborane as a ratiometric and solid state fluorescence sensor for fluoride ions. Tetrahedron Letters, 52(29), 3832-3835. doi:10.1016/j.tetlet.2011.05.076 es_ES
dc.description.references He, X., & Yam, V. W.-W. (2011). A Highly Selective Bifunctional Luminescence Probe for Potassium and Fluoride Ions. Organic Letters, 13(9), 2172-2175. doi:10.1021/ol200277n es_ES
dc.description.references Sun, Y., Hudson, Z. M., Rao, Y., & Wang, S. (2011). Tuning and Switching MLCT Phosphorescence of [Ru(bpy)3]2+Complexes with Triarylboranes and Anions. Inorganic Chemistry, 50(8), 3373-3378. doi:10.1021/ic1021966 es_ES
dc.description.references Xu, W.-J., Liu, S.-J., Zhao, X.-Y., Sun, S., Cheng, S., Ma, T.-C., … Huang, W. (2010). Cationic Iridium(III) Complex Containing both Triarylboron and Carbazole Moieties as a Ratiometric Fluoride Probe That Utilizes a Switchable Triplet-Singlet Emission. Chemistry - A European Journal, 16(24), 7125-7133. doi:10.1002/chem.201000362 es_ES
dc.description.references Dudek, Ł., Grolik, J., Kaźmierska, A., Szneler, E., Eilmes, A., Stadnicka, K., & Eilmes, J. (2011). F− and OH− induced monodeprotonation of a lacunar cationic dibenzotetraaza[14]annulene: experimental evidence of tautomerism in a monoanionic macrocycle. Tetrahedron Letters, 52(28), 3597-3601. doi:10.1016/j.tetlet.2011.05.008 es_ES
dc.description.references Zhang, B., Li, Y., & Sun, W. (2011). Anion-Sensitive 2,4-Dinitrophenylhydrazone-Containing Terpyridine Derivative and Its Platinum Chloride Complex. European Journal of Inorganic Chemistry, 2011(32), 4964-4969. doi:10.1002/ejic.201100537 es_ES
dc.description.references Li, G., Gong, W.-T., Ye, J.-W., Lin, Y., & Ning, G.-L. (2011). Unprecedented intramolecular cyclization of pyridinium to pyrido[1,2-a]benzimidazole: a novel chemodosimeter for fluoride ions. Tetrahedron Letters, 52(12), 1313-1316. doi:10.1016/j.tetlet.2011.01.057 es_ES
dc.description.references Padié, C., & Zeitler, K. (2011). A novel reaction-based, chromogenic and «turn-on» fluorescent chemodosimeter for fluoride detection. New Journal of Chemistry, 35(5), 994. doi:10.1039/c0nj00937g es_ES
dc.description.references Duke, R. M., & Gunnlaugsson, T. (2011). 3-Urea-1,8-naphthalimides are good chemosensors: a highly selective dual colorimetric and fluorescent ICT based anion sensor for fluoride. Tetrahedron Letters, 52(13), 1503-1505. doi:10.1016/j.tetlet.2011.01.099 es_ES
dc.description.references Ahmed, N., Geronimo, I., Hwang, I.-C., Singh, N. J., & Kim, K. S. (2011). cyclo-Bis(urea-3,6-dichlorocarbazole) as a Chromogenic and Fluorogenic Receptor for Anions and a Selective Sensor of Zinc and Copper Cations. Chemistry - A European Journal, 17(31), 8542-8548. doi:10.1002/chem.201100243 es_ES
dc.description.references Park, J. J., Kim, Y.-H., Kim, C., & Kang, J. (2011). Fine tuning of receptor polarity for the development of selective naked eye anion receptor. Tetrahedron Letters, 52(26), 3361-3366. doi:10.1016/j.tetlet.2011.04.081 es_ES
dc.description.references Pereira, G., Castanheira, E. M. S., Ferreira, P. M. T., & Queiroz, M.-J. R. P. (2010). Synthesis and Photophysical Studies of New Fluorescent Indole Derivatives Obtained from β-Bromodehydroamino Acids â Interaction with Fluoride Anions. European Journal of Organic Chemistry, 2010(3), 464-475. doi:10.1002/ejoc.200900737 es_ES
dc.description.references Rivadehi, S., Reid, E. F., Hogan, C. F., Bhosale, S. V., & Langford, S. J. (2012). Fluoride-selective optical sensor based on the dipyrrolyl-tetrathiafulvalene chromophore. Org. Biomol. Chem., 10(4), 705-709. doi:10.1039/c1ob06459b es_ES
dc.description.references Guha, S., & Saha, S. (2010). Fluoride Ion Sensing by an Anion−π Interaction. Journal of the American Chemical Society, 132(50), 17674-17677. doi:10.1021/ja107382x es_ES
dc.description.references Mashraqui, S. H., Betkar, R., Chandiramani, M., Quinonero, D., & Frontera, A. (2010). A novel fluoride selective optical chemosensor based on internal charge transfer signaling. Tetrahedron Letters, 51(4), 596-599. doi:10.1016/j.tetlet.2009.11.050 es_ES
dc.description.references López, M. V., Bermejo, M. R., Vázquez, M. E., Taglietti, A., Zaragoza, G., Pedrido, R., & Martínez-Calvo, M. (2010). Sulfonamide-imines as selective fluorescent chemosensors for the fluoride anion. Org. Biomol. Chem., 8(2), 357-362. doi:10.1039/b916040j es_ES
dc.description.references Qu, Y., Hua, J., & Tian, H. (2010). Colorimetric and Ratiometric Red Fluorescent Chemosensor for Fluoride Ion Based on Diketopyrrolopyrrole. Organic Letters, 12(15), 3320-3323. doi:10.1021/ol101081m es_ES
dc.description.references Luxami, V., Kumar, A., Hundal, M. S., & Kumar, S. (2010). Internal electric field driven chromofluorescent chemodosimeter for fluoride ions. Sensors and Actuators B: Chemical, 145(1), 1-6. doi:10.1016/j.snb.2009.10.071 es_ES
dc.description.references Liu, Z., Wang, X., Yang, Z., & He, W. (2011). Rational Design of a Dual Chemosensor for Cyanide Anion Sensing Based on Dicyanovinyl-Substituted Benzofurazan. The Journal of Organic Chemistry, 76(24), 10286-10290. doi:10.1021/jo201878k es_ES
dc.description.references Kim, Y., Huh, H.-S., Lee, M. H., Lenov, I. L., Zhao, H., & Gabbaï, F. P. (2011). Turn-On Fluorescence Sensing of Cyanide Ions in Aqueous Solution at Parts-per-Billion Concentrations. Chemistry - A European Journal, 17(7), 2057-2062. doi:10.1002/chem.201002861 es_ES
dc.description.references Chaicham, A., Kulchat, S., Tumcharern, G., Tuntulani, T., & Tomapatanaget, B. (2010). Synthesis, photophysical properties, and cyanide detection in aqueous solution of BF2-curcumin dyes. Tetrahedron, 66(32), 6217-6223. doi:10.1016/j.tet.2010.05.088 es_ES
dc.description.references Mashraqui, S. H., Betkar, R., Chandiramani, M., Estarellas, C., & Frontera, A. (2011). Design of a dual sensing highly selective cyanide chemodosimeter based on pyridinium ring chemistry. New J. Chem., 35(1), 57-60. doi:10.1039/c0nj00715c es_ES
dc.description.references Lv, X., Liu, J., Liu, Y., Zhao, Y., Sun, Y.-Q., Wang, P., & Guo, W. (2011). Ratiometric fluorescence detection of cyanide based on a hybrid coumarin–hemicyanine dye: the large emission shift and the high selectivity. Chemical Communications, 47(48), 12843. doi:10.1039/c1cc15721c es_ES
dc.description.references Kim, H. J., Ko, K. C., Lee, J. H., Lee, J. Y., & Kim, J. S. (2011). KCN sensor: unique chromogenic and ‘turn-on’ fluorescent chemodosimeter: rapid response and high selectivity. Chemical Communications, 47(10), 2886. doi:10.1039/c0cc05018k es_ES
dc.description.references Kim, G.-J., & Kim, H.-J. (2010). Doubly activated coumarin as a colorimetric and fluorescent chemodosimeter for cyanide. Tetrahedron Letters, 51(1), 185-187. doi:10.1016/j.tetlet.2009.10.113 es_ES
dc.description.references Kim, G.-J., & Kim, H.-J. (2010). Coumarinyl aldehyde as a Michael acceptor type of colorimetric and fluorescent probe for cyanide in water. Tetrahedron Letters, 51(21), 2914-2916. doi:10.1016/j.tetlet.2010.03.104 es_ES
dc.description.references Shiraishi, Y., Sumiya, S., & Hirai, T. (2011). Highly sensitive cyanide anion detection with a coumarin–spiropyran conjugate as a fluorescent receptor. Chemical Communications, 47(17), 4953. doi:10.1039/c1cc10467e es_ES
dc.description.references Lv, X., Liu, J., Liu, Y., Zhao, Y., Chen, M., Wang, P., & Guo, W. (2011). A ratiometric fluorescent probe for cyanide based on FRET. Organic & Biomolecular Chemistry, 9(13), 4954. doi:10.1039/c1ob05387f es_ES
dc.description.references Park, S., & Kim, H.-J. (2010). Highly activated Michael acceptor by an intramolecular hydrogen bond as a fluorescence turn-on probe for cyanide. Chemical Communications, 46(48), 9197. doi:10.1039/c0cc03910a es_ES
dc.description.references Yu, H., Zhao, Q., Jiang, Z., Qin, J., & Li, Z. (2010). A ratiometric fluorescent probe for cyanide: Convenient synthesis and the proposed mechanism. Sensors and Actuators B: Chemical, 148(1), 110-116. doi:10.1016/j.snb.2010.04.038 es_ES
dc.description.references Li, H., Li, B., Jin, L.-Y., Kan, Y., & Yin, B. (2011). A rapid responsive and highly selective probe for cyanide in the aqueous environment. Tetrahedron, 67(38), 7348-7353. doi:10.1016/j.tet.2011.07.023 es_ES
dc.description.references Dong, Y.-M., Peng, Y., Dong, M., & Wang, Y.-W. (2011). A Selective, Sensitive, and Chromogenic Chemodosimeter for Cyanide Based on the 1,1′-Binaphthyl Scaffold. The Journal of Organic Chemistry, 76(16), 6962-6966. doi:10.1021/jo201269e es_ES
dc.description.references Ajayakumar, M. R., Mukhopadhyay, P., Yadav, S., & Ghosh, S. (2010). Single-Electron Transfer Driven Cyanide Sensing: A New Multimodal Approach. Organic Letters, 12(11), 2646-2649. doi:10.1021/ol1008558 es_ES
dc.description.references Ghosh, A., Das, P., Saha, S., Banerjee, T., Bhatt, H. B., & Das, A. (2011). Diamine derivative of a ruthenium(II)-polypyridyl complex for chemodosimetric detection of nitrite ion in aqueous solution. Inorganica Chimica Acta, 372(1), 115-119. doi:10.1016/j.ica.2011.01.066 es_ES
dc.description.references Dey, R., Chatterjee, T., & Ranu, B. C. (2011). Facile cyclization of 2-arylethynyl aniline to 4(1H)-cinnolones: a new chemodosimeter for nitrite ions. Tetrahedron Letters, 52(3), 461-464. doi:10.1016/j.tetlet.2010.11.098 es_ES
dc.description.references Qinghai, S., Bats, J. W., & Schmittel, M. (2011). Two Closely Related Iridium(III) Complexes as Colorimetric and Fluorometric Chemodosimeters for Nitrite in Aqueous Solution Operating along Different Modes of Action. Inorganic Chemistry, 50(21), 10531-10533. doi:10.1021/ic201753v es_ES
dc.description.references Marom, H., Popowski, Y., Antonov, S., & Gozin, M. (2011). Toward the Development of the Direct and Selective Detection of Nitrates by a Bioinspired Mo–Cu System. Organic Letters, 13(20), 5532-5535. doi:10.1021/ol2022627 es_ES
dc.description.references Yu, F., Li, P., Li, G., Zhao, G., Chu, T., & Han, K. (2011). A Near-IR Reversible Fluorescent Probe Modulated by Selenium for Monitoring Peroxynitrite and Imaging in Living Cells. Journal of the American Chemical Society, 133(29), 11030-11033. doi:10.1021/ja202582x es_ES
dc.description.references Xu, K., Chen, H., Tian, J., Ding, B., Xie, Y., Qiang, M., & Tang, B. (2011). A near-infrared reversible fluorescent probe for peroxynitrite and imaging of redox cycles in living cells. Chemical Communications, 47(33), 9468. doi:10.1039/c1cc12994e es_ES
dc.description.references Oushiki, D., Kojima, H., Terai, T., Arita, M., Hanaoka, K., Urano, Y., & Nagano, T. (2010). Development and Application of a Near-Infrared Fluorescence Probe for Oxidative Stress Based on Differential Reactivity of Linked Cyanine Dyes. Journal of the American Chemical Society, 132(8), 2795-2801. doi:10.1021/ja910090v es_ES
dc.description.references Liu, Y., Sun, Y., Du, J., Lv, X., Zhao, Y., Chen, M., … Guo, W. (2011). Highly sensitive and selective turn-on fluorescent and chromogenic probe for Cu2+and ClO−based on a N-picolinyl rhodamine B-hydrazide derivative. Org. Biomol. Chem., 9(2), 432-437. doi:10.1039/c0ob00411a es_ES
dc.description.references Zhang, W., Guo, C., Liu, L., Qin, J., & Yang, C. (2011). Naked-eye visible and fluorometric dual-signaling chemodosimeter for hypochlorous acid based on water-soluble p-methoxyphenol derivative. Organic & Biomolecular Chemistry, 9(15), 5560. doi:10.1039/c1ob05550j es_ES
dc.description.references Yuan, L., Lin, W., Song, J., & Yang, Y. (2011). Development of an ICT-based ratiometric fluorescent hypochlorite probe suitable for living cell imaging. Chemical Communications, 47(47), 12691. doi:10.1039/c1cc15762k es_ES
dc.description.references Shi, J., Li, Q., Zhang, X., Peng, M., Qin, J., & Li, Z. (2010). Simple triphenylamine-based luminophore as a hypochlorite chemosensor. Sensors and Actuators B: Chemical, 145(1), 583-587. doi:10.1016/j.snb.2009.11.003 es_ES
dc.description.references Chen, X., Lee, K.-A., Ha, E.-M., Lee, K. M., Seo, Y. Y., Choi, H. K., … Yoon, J. (2011). A specific and sensitive method for detection of hypochlorous acid for the imaging of microbe-induced HOCl production. Chemical Communications, 47(15), 4373. doi:10.1039/c1cc10589b es_ES
dc.description.references Peng, H., Cheng, Y., Dai, C., King, A. L., Predmore, B. L., Lefer, D. J., & Wang, B. (2011). A Fluorescent Probe for Fast and Quantitative Detection of Hydrogen Sulfide in Blood. Angewandte Chemie International Edition, 50(41), 9672-9675. doi:10.1002/anie.201104236 es_ES
dc.description.references Liu, C., Pan, J., Li, S., Zhao, Y., Wu, L. Y., Berkman, C. E., … Xian, M. (2011). Capture and Visualization of Hydrogen Sulfide by a Fluorescent Probe. Angewandte Chemie International Edition, 50(44), 10327-10329. doi:10.1002/anie.201104305 es_ES
dc.description.references Choi, M. G., Hwang, J., Eor, S., & Chang, S.-K. (2010). Chromogenic and Fluorogenic Signaling of Sulfite by Selective Deprotection of Resorufin Levulinate. Organic Letters, 12(24), 5624-5627. doi:10.1021/ol102298b es_ES
dc.description.references Gu, X., Liu, C., Zhu, Y.-C., & Zhu, Y.-Z. (2011). A Boron-dipyrromethene-Based Fluorescent Probe for Colorimetric and Ratiometric Detection of Sulfite. Journal of Agricultural and Food Chemistry, 59(22), 11935-11939. doi:10.1021/jf2032928 es_ES
dc.description.references Duke, R. M., & Gunnlaugsson, T. (2010). Fluorescent sensing of anions using a bis-quinoxaline amidothiourea based supramolecular cleft; an example of an anion-induced deprotonation event. Tetrahedron Letters, 51(41), 5402-5405. doi:10.1016/j.tetlet.2010.07.168 es_ES
dc.description.references Muñiz, F. M., Alcázar, V., Sanz, F., Simón, L., Fuentes de Arriba, Á. L., Raposo, C., & Morán, J. R. (2010). A Xanthene-Benzimidazole Receptor with Multiple H-Bond Donors for Carboxylic Acids. European Journal of Organic Chemistry, 2010(32), 6179-6185. doi:10.1002/ejoc.201000905 es_ES
dc.description.references Choi, M. G., Cha, S., Park, J. E., Lee, H., Jeon, H. L., & Chang, S.-K. (2010). Selective Perborate Signaling by Deprotection of Fluorescein and Resorufin Acetates. Organic Letters, 12(7), 1468-1471. doi:10.1021/ol100126c es_ES
dc.description.references Zhou, Y., Won, J., Lee, J. Y., & Yoon, J. (2011). Studies leading to the development of a highly selective colorimetric and fluorescent chemosensor for lysine. Chemical Communications, 47(7), 1997. doi:10.1039/c0cc04942e es_ES
dc.description.references Shiu, H.-Y., Chong, H.-C., Leung, Y.-C., Wong, M.-K., & Che, C.-M. (2010). A Highly Selective FRET-Based Fluorescent Probe for Detection of Cysteine and Homocysteine. Chemistry - A European Journal, 16(11), 3308-3313. doi:10.1002/chem.200903121 es_ES
dc.description.references Shiu, H.-Y., Wong, M.-K., & Che, C.-M. (2011). «Turn-on» FRET-based luminescent iridium(iii) probes for the detection of cysteine and homocysteine. Chemical Communications, 47(15), 4367. doi:10.1039/c0cc04288a es_ES
dc.description.references Long, L., Lin, W., Chen, B., Gao, W., & Yuan, L. (2011). Construction of a FRET-based ratiometric fluorescent thiol probe. Chem. Commun., 47(3), 893-895. doi:10.1039/c0cc03806g es_ES
dc.description.references Lim, S.-Y., Lee, S., Park, S. B., & Kim, H.-J. (2011). Highly selective fluorescence turn-on probe for glutathione. Tetrahedron Letters, 52(30), 3902-3904. doi:10.1016/j.tetlet.2011.05.086 es_ES
dc.description.references Sun, Y.-Q., Chen, M., Liu, J., Lv, X., Li, J., & Guo, W. (2011). Nitroolefin-based coumarin as a colorimetric and fluorescent dual probe for biothiols. Chemical Communications, 47(39), 11029. doi:10.1039/c1cc14299b es_ES
dc.description.references Jung, H. S., Ko, K. C., Kim, G.-H., Lee, A.-R., Na, Y.-C., Kang, C., … Kim, J. S. (2011). Coumarin-Based Thiol Chemosensor: Synthesis, Turn-On Mechanism, and Its Biological Application. Organic Letters, 13(6), 1498-1501. doi:10.1021/ol2001864 es_ES
dc.description.references García-Beltrán, O., Mena, N., Pérez, E. G., Cassels, B. K., Nuñez, M. T., Werlinger, F., … Pavez, P. (2011). The development of a fluorescence turn-on sensor for cysteine, glutathione and other biothiols. A kinetic study. Tetrahedron Letters, 52(49), 6606-6609. doi:10.1016/j.tetlet.2011.09.137 es_ES
dc.description.references Ha, H.-J., Yoon, D.-H., Park, S., & Kim, H.-J. (2011). Fluorescence turn-on probe for biothiols: intramolecular hydrogen bonding effect on the Michael reaction. Tetrahedron, 67(40), 7759-7762. doi:10.1016/j.tet.2011.08.002 es_ES
dc.description.references Chen, X., Ko, S.-K., Kim, M. J., Shin, I., & Yoon, J. (2010). A thiol-specific fluorescent probe and its application for bioimaging. Chemical Communications, 46(16), 2751. doi:10.1039/b925453f es_ES
dc.description.references Huo, F.-J., Sun, Y.-Q., Su, J., Yang, Y.-T., Yin, C.-X., & Chao, J.-B. (2010). Chromene «Lock», Thiol «Key», and Mercury(II) Ion «Hand»: A Single Molecular Machine Recognition System. Organic Letters, 12(21), 4756-4759. doi:10.1021/ol101771j es_ES
dc.description.references Zhao, N., Wu, Y.-H., Shi, L.-X., Lin, Q.-P., & Chen, Z.-N. (2010). A sensitive phosphorescent thiol chemosensor based on an iridium(iii) complex with α,β-unsaturated ketone functionalized 2,2′-bipyridyl ligand. Dalton Transactions, 39(35), 8288. doi:10.1039/c0dt00456a es_ES
dc.description.references Deng, L., Wu, W., Guo, H., Zhao, J., Ji, S., Zhang, X., … Zhang, C. (2011). Colorimetric and Ratiometric Fluorescent Chemosensor Based on Diketopyrrolopyrrole for Selective Detection of Thiols: An Experimental and Theoretical Study. The Journal of Organic Chemistry, 76(22), 9294-9304. doi:10.1021/jo201487m es_ES
dc.description.references Kwon, H., Lee, K., & Kim, H.-J. (2011). Coumarin–malonitrile conjugate as a fluorescence turn-on probe for biothiols and its cellular expression. Chem. Commun., 47(6), 1773-1775. doi:10.1039/c0cc04092d es_ES
dc.description.references Cao, X., Lin, W., & Yu, Q. (2011). A Ratiometric Fluorescent Probe for Thiols Based on a Tetrakis(4-hydroxyphenyl)porphyrin–Coumarin Scaffold. The Journal of Organic Chemistry, 76(18), 7423-7430. doi:10.1021/jo201199k es_ES
dc.description.references Zhu, B., Zhang, X., Li, Y., Wang, P., Zhang, H., & Zhuang, X. (2010). A colorimetric and ratiometric fluorescent probe for thiols and its bioimaging applications. Chemical Communications, 46(31), 5710. doi:10.1039/c0cc00477d es_ES
dc.description.references Lee, J. H., Lim, C. S., Tian, Y. S., Han, J. H., & Cho, B. R. (2010). A Two-Photon Fluorescent Probe for Thiols in Live Cells and Tissues. Journal of the American Chemical Society, 132(4), 1216-1217. doi:10.1021/ja9090676 es_ES
dc.description.references Yue, Y., Guo, Y., Xu, J., & Shao, S. (2011). A Bodipy-based derivative for selective fluorescence sensing of homocysteine and cysteine. New J. Chem., 35(1), 61-64. doi:10.1039/c0nj00720j es_ES
dc.description.references Yuan, L., Lin, W., & Yang, Y. (2011). A ratiometric fluorescent probe for specific detection of cysteine over homocysteine and glutathione based on the drastic distinction in the kinetic profiles. Chemical Communications, 47(22), 6275. doi:10.1039/c1cc11316j es_ES
dc.description.references Hu, M., Fan, J., Li, H., Song, K., Wang, S., Cheng, G., & Peng, X. (2011). Fluorescent chemodosimeter for Cys/Hcy with a large absorption shift and imaging in living cells. Org. Biomol. Chem., 9(4), 980-983. doi:10.1039/c0ob00957a es_ES
dc.description.references Lim, S., Escobedo, J. O., Lowry, M., Xu, X., & Strongin, R. (2010). Selective fluorescence detection of cysteine and N-terminal cysteine peptide residues. Chemical Communications, 46(31), 5707. doi:10.1039/c0cc01398f es_ES
dc.description.references Zhang, R., Yu, X., Ye, Z., Wang, G., Zhang, W., & Yuan, J. (2010). Turn-on Luminescent Probe for Cysteine/Homocysteine Based on a Ruthenium(II) Complex. Inorganic Chemistry, 49(17), 7898-7903. doi:10.1021/ic100810z es_ES
dc.description.references Xiong, L., Zhao, Q., Chen, H., Wu, Y., Dong, Z., Zhou, Z., & Li, F. (2010). Phosphorescence Imaging of Homocysteine and Cysteine in Living Cells Based on a Cationic Iridium(III) Complex. Inorganic Chemistry, 49(14), 6402-6408. doi:10.1021/ic902266x es_ES
dc.description.references Guo, H., Jing, Y., Yuan, X., Ji, S., Zhao, J., Li, X., & Kan, Y. (2011). Highly selective fluorescent OFF–ON thiol probes based on dyads of BODIPY and potent intramolecular electron sink 2,4-dinitrobenzenesulfonyl subunits. Organic & Biomolecular Chemistry, 9(10), 3844. doi:10.1039/c0ob00910e es_ES
dc.description.references Li, X., Qian, S., He, Q., Yang, B., Li, J., & Hu, Y. (2010). Design and synthesis of a highly selective fluorescent turn-on probe for thiol bioimaging in living cells. Organic & Biomolecular Chemistry, 8(16), 3627. doi:10.1039/c004344c es_ES
dc.description.references Lan, M., Wu, J., Liu, W., Zhang, H., Zhang, W., Zhuang, X., & Wang, P. (2011). Highly sensitive fluorescent probe for thiols based on combination of PET and ESIPT mechanisms. Sensors and Actuators B: Chemical, 156(1), 332-337. doi:10.1016/j.snb.2011.04.042 es_ES
dc.description.references Zhai, Y., Jin, L., Wang, P., & Dong, S. (2011). Dual-functional Au–Fe3O4 dumbbell nanoparticles for sensitive and selective turn-on fluorescent detection of cyanide based on the inner filter effect. Chemical Communications, 47(29), 8268. doi:10.1039/c1cc13149d es_ES
dc.description.references Lou, X., Zhang, Y., Qin, J., & Li, Z. (2011). A Highly Sensitive and Selective Fluorescent Probe for Cyanide Based on the Dissolution of Gold Nanoparticles and Its Application in Real Samples. Chemistry - A European Journal, 17(35), 9691-9696. doi:10.1002/chem.201100389 es_ES
dc.description.references Huang, Z., Pu, F., Lin, Y., Ren, J., & Qu, X. (2011). Modulating DNA-templated silver nanoclusters for fluorescence turn-on detection of thiol compounds. Chemical Communications, 47(12), 3487. doi:10.1039/c0cc05651k es_ES
dc.description.references Zhao, H. X., Liu, L. Q., Liu, Z. D., Wang, Y., Zhao, X. J., & Huang, C. Z. (2011). Highly selective detection of phosphate in very complicated matrixes with an off–on fluorescent probe of europium-adjusted carbon dots. Chemical Communications, 47(9), 2604. doi:10.1039/c0cc04399k es_ES
dc.description.references Liu, J., Bao, C., Zhong, X., Zhao, C., & Zhu, L. (2010). Highly selective detection of glutathione using a quantum-dot-based OFF–ON fluorescent probe. Chemical Communications, 46(17), 2971. doi:10.1039/b924299f es_ES
dc.description.references Moro, A. J., Schmidt, J., Doussineau, T., Lapresta-Fernandéz, A., Wegener, J., & Mohr, G. J. (2011). Surface-functionalized fluorescent silica nanoparticles for the detection of ATP. Chemical Communications, 47(21), 6066. doi:10.1039/c1cc10419e es_ES
dc.description.references Calero, P., Hecht, M., Martínez-Máñez, R., Sancenón, F., Soto, J., Vivancos, J. L., & Rurack, K. (2011). Silica nanoparticles functionalised with cation coordination sites and fluorophores for the differential sensing of anions in a quencher displacement assay (QDA). Chemical Communications, 47(38), 10599. doi:10.1039/c1cc13039k es_ES
dc.description.references Tan, C., & Wang, Q. (2011). Reversible Terbium Luminescent Polyelectrolyte Hydrogels for Detection of H2PO4−and HSO4−in Water. Inorganic Chemistry, 50(7), 2953-2956. doi:10.1021/ic102366v es_ES
dc.description.references Yan, H., & Li, H. (2010). Urea type of fluorescent organic nanoparticles with high specificity for HCO3− anions. Sensors and Actuators B: Chemical, 148(1), 81-86. doi:10.1016/j.snb.2010.03.080 es_ES
dc.description.references Tian, J., Chen, H., Zhuo, L., Xie, Y., Li, N., & Tang, B. (2011). A Highly Selective, Cell-Permeable Fluorescent Nanoprobe for Ratiometric Detection and Imaging of Peroxynitrite in Living Cells. Chemistry - A European Journal, 17(24), 6626-6634. doi:10.1002/chem.201100148 es_ES
dc.description.references Riis-Johannessen, T., & Severin, K. (2010). A Micelle-Based Chemosensing Ensemble for the Fluorimetric Detection of Chloride in Water. Chemistry - A European Journal, 16(28), 8291-8295. doi:10.1002/chem.201001287 es_ES
dc.description.references Chen, X., Kang, S., Kim, M. J., Kim, J., Kim, Y. S., Kim, H., … Yoon, J. (2010). Thin-Film Formation of Imidazolium-Based Conjugated Polydiacetylenes and Their Application for Sensing Anionic Surfactants. Angewandte Chemie International Edition, 49(8), 1422-1425. doi:10.1002/anie.200905041 es_ES
dc.description.references Zhao, X., & Schanze, K. S. (2010). Fluorescent ratiometric sensing of pyrophosphate via induced aggregation of a conjugated polyelectrolyte. Chemical Communications, 46(33), 6075. doi:10.1039/c0cc01332c es_ES
dc.description.references Guo, Z., Zhu, W., & Tian, H. (2010). Hydrophilic Copolymer Bearing Dicyanomethylene-4H-pyran Moiety As Fluorescent Film Sensor for Cu2+and Pyrophosphate Anion. Macromolecules, 43(2), 739-744. doi:10.1021/ma902466g es_ES
dc.description.references Wu, X., Xu, B., Tong, H., & Wang, L. (2011). Highly Selective and Sensitive Detection of Cyanide by a Reaction-Based Conjugated Polymer Chemosensor. Macromolecules, 44(11), 4241-4248. doi:10.1021/ma2005684 es_ES
dc.description.references Naito, M., Nakamura, M., Terao, K., Kawabe, T., & Fujiki, M. (2010). Monovalent Anion Indicator Based on Fluorescence Quenching of Helical Fluorinated Poly(dialkylsilanes). Macromolecules, 43(19), 7919-7923. doi:10.1021/ma1011304 es_ES
dc.description.references Saikia, G., & Iyer, P. K. (2011). A Remarkable Superquenching and Superdequenching Sensor for the Selective and Noninvasive Detection of Inorganic Phosphates in Saliva. Macromolecules, 44(10), 3753-3758. doi:10.1021/ma1026675 es_ES
dc.description.references Rostami, A., Wei, C. J., Guérin, G., & Taylor, M. S. (2011). Anion Detection by a Fluorescent Poly(squaramide): Self-Assembly of Anion-Binding Sites by Polymer Aggregation. Angewandte Chemie International Edition, 50(9), 2059-2062. doi:10.1002/anie.201006884 es_ES
dc.description.references Gruber, B., Stadlbauer, S., Späth, A., Weiss, S., Kalinina, M., & König, B. (2010). Modular Chemosensors from Self-Assembled Vesicle Membranes with Amphiphilic Binding Sites and Reporter Dyes. Angewandte Chemie International Edition, 49(39), 7125-7128. doi:10.1002/anie.201001101 es_ES
dc.description.references Gruber, B., Stadlbauer, S., Woinaroschy, K., & König, B. (2010). Luminescent vesicular receptors for the recognition of biologically important phosphate species. Organic & Biomolecular Chemistry, 8(16), 3704. doi:10.1039/c004916f es_ES
dc.description.references Xu, D., Liu, X., Lu, R., Xue, P., Zhang, X., Zhou, H., & Jia, J. (2011). New dendritic gelator bearing carbazole in each branching unit: selected response to fluoride ion in gel phase. Organic & Biomolecular Chemistry, 9(5), 1523. doi:10.1039/c0ob00786b es_ES
dc.description.references Li, T., Fu, R., & Park, H. G. (2010). Pyrrolo-dC based fluorescent aptasensors for the molecular recognition of targets. Chemical Communications, 46(19), 3271. doi:10.1039/b923462d es_ES
dc.description.references Kim, J.-H., Ahn, J.-H., Barone, P. W., Jin, H., Zhang, J., Heller, D. A., & Strano, M. S. (2010). A Luciferase/Single-Walled Carbon Nanotube Conjugate for Near-Infrared Fluorescent Detection of Cellular ATP. Angewandte Chemie International Edition, 49(8), 1456-1459. doi:10.1002/anie.200906251 es_ES
dc.description.references Zhao, C., Qu, K., Song, Y., Xu, C., Ren, J., & Qu, X. (2010). A Reusable DNA Single-Walled Carbon-Nanotube-Based Fluorescent Sensor for Highly Sensitive and Selective Detection of Ag+and Cysteine in Aqueous Solutions. Chemistry - A European Journal, 16(27), 8147-8154. doi:10.1002/chem.201000306 es_ES
dc.description.references Xie, W. Y., Huang, W. T., Li, N. B., & Luo, H. Q. (2012). Design of a dual-output fluorescent DNA logic gate and detection of silver ions and cysteine based on graphene oxide. Chem. Commun., 48(1), 82-84. doi:10.1039/c1cc15449d es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem