- -

Optical chemosensors and reagents to detect explosives

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Optical chemosensors and reagents to detect explosives

Show full item record

Salinas Soler, Y.; Martínez Mañez, R.; Marcos Martínez, MD.; Sancenón Galarza, F.; Costero Nieto, AM.; Parra Álvarez, M.; Gil Grau, S. (2012). Optical chemosensors and reagents to detect explosives. Chemical Society Reviews. 41(3):1261-1296. https://doi.org/10.1039/c1cs15173h

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/37358

Files in this item

Item Metadata

Title: Optical chemosensors and reagents to detect explosives
Author: Salinas Soler, Yolanda Martínez Mañez, Ramón Marcos Martínez, María Dolores Sancenón Galarza, Félix Costero Nieto, Ana María Parra Álvarez, Margarita Gil Grau, Salvador
UPV Unit: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic
Issued date:
Abstract:
[EN] This critical review is focused on examples reported from 1947 to 2010 related to the design of chromo-fluorogenic chemosensors and reagents for explosives (141 references). © 2012 The Royal Society of Chemistry.
Subjects: Dyes , Chemical analysis , Colorimetry , Light related phenomena , Spectrofluorometry , Chemistry Techniques, Analytical , Explosive Agents , Optical Processes , Reagents , Indicators , Markers and buffers
Copyrigths: Reserva de todos los derechos
Source:
Chemical Society Reviews. (issn: 0306-0012 )
DOI: 10.1039/c1cs15173h
Publisher:
Royal Society of Chemistry
Publisher version: http://dx.doi.org/10.1039/C1CS15173H
Project ID:
MICINN/MAT2009-14564-C04
info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEO09%2F2009%2F016/ES/Ayuda prometeo 2009 para el grupo de diseño y desarrollo de sensores/
Thanks:
Financial support from the Spanish Government (project MAT2009-14564-C04) and the Generalitat Valencia (project PROMETEO/2009/016) is gratefully acknowledged. Y.S. is grateful to the Spanish Ministry of Science and Innovation ...[+]
Type: Artículo

References

Furton, K. (2001). The scientific foundation and efficacy of the use of canines as chemical detectors for explosives. Talanta, 54(3), 487-500. doi:10.1016/s0039-9140(00)00546-4

H�kansson, K., Coorey, R. V., Zubarev, R. A., Talrose, V. L., & H�kansson, P. (2000). Low-mass ions observed in plasma desorption mass spectrometry of high explosives. Journal of Mass Spectrometry, 35(3), 337-346. doi:10.1002/(sici)1096-9888(200003)35:3<337::aid-jms940>3.0.co;2-7

Walsh, M. (2001). Determination of nitroaromatic, nitramine, and nitrate ester explosives in soil by gas chromatography and an electron capture detector. Talanta, 54(3), 427-438. doi:10.1016/s0039-9140(00)00541-5 [+]
Furton, K. (2001). The scientific foundation and efficacy of the use of canines as chemical detectors for explosives. Talanta, 54(3), 487-500. doi:10.1016/s0039-9140(00)00546-4

H�kansson, K., Coorey, R. V., Zubarev, R. A., Talrose, V. L., & H�kansson, P. (2000). Low-mass ions observed in plasma desorption mass spectrometry of high explosives. Journal of Mass Spectrometry, 35(3), 337-346. doi:10.1002/(sici)1096-9888(200003)35:3<337::aid-jms940>3.0.co;2-7

Walsh, M. (2001). Determination of nitroaromatic, nitramine, and nitrate ester explosives in soil by gas chromatography and an electron capture detector. Talanta, 54(3), 427-438. doi:10.1016/s0039-9140(00)00541-5

Sylvia, J. M., Janni, J. A., Klein, J. D., & Spencer, K. M. (2000). Surface-Enhanced Raman Detection of 2,4-Dinitrotoluene Impurity Vapor as a Marker To Locate Landmines. Analytical Chemistry, 72(23), 5834-5840. doi:10.1021/ac0006573

Yinon, J. (1982). Mass spectrometry of explosives: Nitro compounds, nitrate esters, and nitramines. Mass Spectrometry Reviews, 1(3), 257-307. doi:10.1002/mas.1280010304

Mathurin, J. C., Faye, T., Brunot, A., Tabet, J. C., Wells, G., & Fuché, C. (2000). High-Pressure Ion Source Combined with an In-Axis Ion Trap Mass Spectrometer. 1. Instrumentation and Applications. Analytical Chemistry, 72(20), 5055-5062. doi:10.1021/ac000171m

Hallowell, S. (2001). Screening people for illicit substances: a survey of current portal technology. Talanta, 54(3), 447-458. doi:10.1016/s0039-9140(00)00543-9

Vourvopoulos, G. (2001). Pulsed fast/thermal neutron analysis: a technique for explosives detection. Talanta, 54(3), 459-468. doi:10.1016/s0039-9140(00)00544-0

Krausa, M., & Schorb, K. (1999). Trace detection of 2,4,6-trinitrotoluene in the gaseous phase by cyclic voltammetry. Journal of Electroanalytical Chemistry, 461(1-2), 10-13. doi:10.1016/s0022-0728(98)00162-4

Steinfeld, J. I., & Wormhoudt, J. (1998). EXPLOSIVES DETECTION: A Challenge for Physical Chemistry. Annual Review of Physical Chemistry, 49(1), 203-232. doi:10.1146/annurev.physchem.49.1.203

Moore, D. S. (2004). Instrumentation for trace detection of high explosives. Review of Scientific Instruments, 75(8), 2499-2512. doi:10.1063/1.1771493

Martínez-Máñez, R., Sancenón, F., Hecht, M., Biyikal, M., & Rurack, K. (2010). Nanoscopic optical sensors based on functional supramolecular hybrid materials. Analytical and Bioanalytical Chemistry, 399(1), 55-74. doi:10.1007/s00216-010-4198-2

Moragues, M. E., Martínez-Máñez, R., & Sancenón, F. (2011). Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the year 2009. Chemical Society Reviews, 40(5), 2593. doi:10.1039/c0cs00015a

Martínez-Máñez, R., & Sancenón, F. (2005). New Advances in Fluorogenic Anion Chemosensors. Journal of Fluorescence, 15(3), 267-285. doi:10.1007/s10895-005-2626-z

Xu, Z., Chen, X., Kim, H. N., & Yoon, J. (2010). Sensors for the optical detection ofcyanide ion. Chem. Soc. Rev., 39(1), 127-137. doi:10.1039/b907368j

Nolan, E. M., & Lippard, S. J. (2008). Tools and Tactics for the Optical Detection of Mercuric Ion. Chemical Reviews, 108(9), 3443-3480. doi:10.1021/cr068000q

Pallavicini, P., Diaz-Fernandez, Y. A., & Pasotti, L. (2009). Micelles as nanosized containers for the self-assembly of multicomponent fluorescent sensors. Coordination Chemistry Reviews, 253(17-18), 2226-2240. doi:10.1016/j.ccr.2008.11.010

Que, E. L., & Chang, C. J. (2010). Responsive magnetic resonance imaging contrast agents as chemical sensors for metals in biology and medicine. Chem. Soc. Rev., 39(1), 51-60. doi:10.1039/b914348n

Mohr, G. J. (2004). Tailoring the sensitivity and spectral properties of a chromoreactand for the detection of amines and alcohols. Analytica Chimica Acta, 508(2), 233-237. doi:10.1016/j.aca.2003.12.005

Martínez-Máñez, R., & Sancenón, F. (2003). Fluorogenic and Chromogenic Chemosensors and Reagents for Anions. Chemical Reviews, 103(11), 4419-4476. doi:10.1021/cr010421e

J. P. Agrawal and R. D.Hodgson, Organic Chemistry of Explosives, John Wiley & Sons, Chichester, 2007, ISBN-13, 978, 0-470-02967-1, HB

Cumming, C. J., Aker, C., Fisher, M., Fok, M., la Grone, M. J., Reust, D., … Williams, V. (2001). Using novel fluorescent polymers as sensory materials for above-ground sensing of chemical signature compounds emanating from buried landmines. IEEE Transactions on Geoscience and Remote Sensing, 39(6), 1119-1128. doi:10.1109/36.927423

Toal, S. J., & Trogler, W. C. (2006). Polymer sensors for nitroaromatic explosives detection. Journal of Materials Chemistry, 16(28), 2871. doi:10.1039/b517953j

McQuade, D. T., Pullen, A. E., & Swager, T. M. (2000). Conjugated Polymer-Based Chemical Sensors. Chemical Reviews, 100(7), 2537-2574. doi:10.1021/cr9801014

Zhou, Q., & Swager, T. M. (1995). Method for enhancing the sensitivity of fluorescent chemosensors: energy migration in conjugated polymers. Journal of the American Chemical Society, 117(26), 7017-7018. doi:10.1021/ja00131a031

Yang, J.-S., & Swager, T. M. (1998). Porous Shape Persistent Fluorescent Polymer Films:  An Approach to TNT Sensory Materials. Journal of the American Chemical Society, 120(21), 5321-5322. doi:10.1021/ja9742996

Yang, J.-S., & Swager, T. M. (1998). Fluorescent Porous Polymer Films as TNT Chemosensors:  Electronic and Structural Effects. Journal of the American Chemical Society, 120(46), 11864-11873. doi:10.1021/ja982293q

Yamaguchi, S., & Swager, T. M. (2001). Oxidative Cyclization of Bis(biaryl)acetylenes:  Synthesis and Photophysics of Dibenzo[g,p]chrysene-Based Fluorescent Polymers. Journal of the American Chemical Society, 123(48), 12087-12088. doi:10.1021/ja016692o

Zahn, S., & Swager, T. M. (2002). Three-Dimensional Electronic Delocalization in Chiral Conjugated Polymers. Angewandte Chemie International Edition, 41(22), 4225-4230. doi:10.1002/1521-3773(20021115)41:22<4225::aid-anie4225>3.0.co;2-3

Amara, J. P., & Swager, T. M. (2005). Synthesis and Properties of Poly(phenylene ethynylene)s with Pendant Hexafluoro-2-propanol Groups. Macromolecules, 38(22), 9091-9094. doi:10.1021/ma051562b

Zhao, D., & Swager, T. M. (2005). Sensory Responses in Solution vs Solid State:  A Fluorescence Quenching Study of Poly(iptycenebutadiynylene)s. Macromolecules, 38(22), 9377-9384. doi:10.1021/ma051584y

Thomas III, S. W., Amara, J. P., Bjork, R. E., & Swager, T. M. (2005). Amplifying fluorescent polymer sensors for the explosives taggant 2,3-dimethyl-2,3-dinitrobutane (DMNB). Chemical Communications, (36), 4572. doi:10.1039/b508408c

Narayanan, A., Varnavski, O. P., Swager, T. M., & Goodson, T. (2008). Multiphoton Fluorescence Quenching of Conjugated Polymers for TNT Detection. The Journal of Physical Chemistry C, 112(4), 881-884. doi:10.1021/jp709662w

Chen, S., Zhang, Q., Zhang, J., Gu, J., & Zhang, L. (2010). Synthesis of two conjugated polymers as TNT chemosensor materials. Sensors and Actuators B: Chemical, 149(1), 155-160. doi:10.1016/j.snb.2010.06.007

Long, Y., Chen, H., Yang, Y., Wang, H., Yang, Y., Li, N., … Liu, F. (2009). Electrospun Nanofibrous Film Doped with a Conjugated Polymer for DNT Fluorescence Sensor. Macromolecules, 42(17), 6501-6509. doi:10.1021/ma900756w

Chang, C.-P., Chao, C.-Y., Huang, J. H., Li, A.-K., Hsu, C.-S., Lin, M.-S., … Su, A.-C. (2004). Fluorescent conjugated polymer films as TNT chemosensors. Synthetic Metals, 144(3), 297-301. doi:10.1016/j.synthmet.2004.04.003

Levitsky, I. A., Euler, W. B., Tokranova, N., & Rose, A. (2007). Fluorescent polymer-porous silicon microcavity devices for explosive detection. Applied Physics Letters, 90(4), 041904. doi:10.1063/1.2432247

Chen, L., McBranch, D., Wang, R., & Whitten, D. (2000). Surfactant-induced modification of quenching of conjugated polymer fluorescence by electron acceptors: applications for chemical sensing. Chemical Physics Letters, 330(1-2), 27-33. doi:10.1016/s0009-2614(00)00970-2

Rose, A., Zhu, Z., Madigan, C. F., Swager, T. M., & Bulović, V. (2005). Sensitivity gains in chemosensing by lasing action in organic polymers. Nature, 434(7035), 876-879. doi:10.1038/nature03438

Tamao, K., Uchida, M., Izumizawa, T., Furukawa, K., & Yamaguchi, S. (1996). Silole Derivatives as Efficient Electron Transporting Materials. Journal of the American Chemical Society, 118(47), 11974-11975. doi:10.1021/ja962829c

Sohn, H., Huddleston, R. R., Powell, D. R., West, R., Oka, K., & Yonghua, X. (1999). An Electroluminescent Polysilole and Some Dichlorooligosiloles. Journal of the American Chemical Society, 121(12), 2935-2936. doi:10.1021/ja983350i

Ohshita, J., & Kunai, A. (1998). Polymers with alternating organosilicon and π-conjugated units. Acta Polymerica, 49(8), 379-403. doi:10.1002/(sici)1521-4044(199808)49:8<379::aid-apol379>3.0.co;2-z

Toal, S. J., Magde, D., & Trogler, W. C. (2005). Luminescent oligo(tetraphenyl)silole nanoparticles as chemical sensors for aqueous TNT. Chemical Communications, (43), 5465. doi:10.1039/b509404f

Sohn, H., Sailor, M. J., Magde, D., & Trogler, W. C. (2003). Detection of Nitroaromatic Explosives Based on Photoluminescent Polymers Containing Metalloles. Journal of the American Chemical Society, 125(13), 3821-3830. doi:10.1021/ja021214e

Sanchez, J. C., DiPasquale, A. G., Rheingold, A. L., & Trogler, W. C. (2007). Synthesis, Luminescence Properties, and Explosives Sensing with 1,1-Tetraphenylsilole- and 1,1-Silafluorene-vinylene Polymers. Chemistry of Materials, 19(26), 6459-6470. doi:10.1021/cm702299g

Sanchez, J. C., Urbas, S. A., Toal, S. J., DiPasquale, A. G., Rheingold, A. L., & Trogler, W. C. (2008). Catalytic Hydrosilylation Routes to Divinylbenzene Bridged Silole and Silafluorene Polymers. Applications to Surface Imaging of Explosive Particulates. Macromolecules, 41(4), 1237-1245. doi:10.1021/ma702274c

Sanchez, J. C., & Trogler, W. C. (2008). Efficient blue-emitting silafluorene–fluorene-conjugated copolymers: selective turn-off/turn-on detection of explosives. Journal of Materials Chemistry, 18(26), 3143. doi:10.1039/b802623h

Liu, J., Zhong, Y., Lam, J. W. Y., Lu, P., Hong, Y., Yu, Y., … Tang, B. Z. (2010). Hyperbranched Conjugated Polysiloles: Synthesis, Structure, Aggregation-Enhanced Emission, Multicolor Fluorescent Photopatterning, and Superamplified Detection of Explosives. Macromolecules, 43(11), 4921-4936. doi:10.1021/ma902432m

Lu, P., Lam, J. W. Y., Liu, J., Jim, C. K. W., Yuan, W., Xie, N., … Tang, B. Z. (2010). Aggregation-Induced Emission in a Hyperbranched Poly(silylenevinylene) and Superamplification in Its Emission Quenching by Explosives. Macromolecular Rapid Communications, 31(9-10), 834-839. doi:10.1002/marc.200900794

Liu, Y., Mills, R. C., Boncella, J. M., & Schanze, K. S. (2001). Fluorescent Polyacetylene Thin Film Sensor for Nitroaromatics. Langmuir, 17(24), 7452-7455. doi:10.1021/la010696p

Toy, L. G., Nagai, K., Freeman, B. D., Pinnau, I., He, Z., Masuda, T., … Yampolskii, Y. P. (2000). Pure-Gas and Vapor Permeation and Sorption Properties of Poly[1-phenyl-2-[p-(trimethylsilyl)phenyl]acetylene] (PTMSDPA). Macromolecules, 33(7), 2516-2524. doi:10.1021/ma991566e

Saxena, A., Fujiki, M., Rai, R., & Kwak, G. (2005). Fluoroalkylated Polysilane Film as a Chemosensor for Explosive Nitroaromatic Compounds. Chemistry of Materials, 17(8), 2181-2185. doi:10.1021/cm048319w

Saxena, A., Rai, R., Kim, S.-Y., Fujiki, M., Naito, M., Okoshi, K., & Kwak, G. (2006). Weak noncovalent Si···FC interactions stabilized fluoroalkylated rod-like polysilanes as ultrasensitive chemosensors. Journal of Polymer Science Part A: Polymer Chemistry, 44(17), 5060-5075. doi:10.1002/pola.21607

Toal, S. J., Sanchez, J. C., Dugan, R. E., & Trogler, W. C. (2007). Visual Detection of Trace Nitroaromatic Explosive Residue Using Photoluminescent Metallole-Containing Polymers. Journal of Forensic Sciences, 52(1), 79-83. doi:10.1111/j.1556-4029.2006.00332.x

Stringer, R. C., Gangopadhyay, S., & Grant, S. A. (2010). Detection of Nitroaromatic Explosives Using a Fluorescent-Labeled Imprinted Polymer. Analytical Chemistry, 82(10), 4015-4019. doi:10.1021/ac902838c

Li, J., Kendig, C. E., & Nesterov, E. E. (2007). Chemosensory Performance of Molecularly Imprinted Fluorescent Conjugated Polymer Materials. Journal of the American Chemical Society, 129(51), 15911-15918. doi:10.1021/ja0748027

Bunte, G., Hürttlen, J., Pontius, H., Hartlieb, K., & Krause, H. (2007). Gas phase detection of explosives such as 2,4,6-trinitrotoluene by molecularly imprinted polymers. Analytica Chimica Acta, 591(1), 49-56. doi:10.1016/j.aca.2007.02.014

Zhang, X., & Jenekhe, S. A. (2000). Electroluminescence of Multicomponent Conjugated Polymers. 1. Roles of Polymer/Polymer Interfaces in Emission Enhancement and Voltage-Tunable Multicolor Emission in Semiconducting Polymer/Polymer Heterojunctions. Macromolecules, 33(6), 2069-2082. doi:10.1021/ma991913k

Hou, S., Ding, M., & Gao, L. (2003). Synthesis and Properties of Polyquinolines and Polyanthrazolines Containing Pyrrole Units in the Main Chain. Macromolecules, 36(11), 3826-3832. doi:10.1021/ma025768d

Kim, T. H., Kim, H. J., Kwak, C. G., Park, W. H., & Lee, T. S. (2006). Aromatic oxadiazole-based conjugated polymers with excited-state intramolecular proton transfer: Their synthesis and sensing ability for explosive nitroaromatic compounds. Journal of Polymer Science Part A: Polymer Chemistry, 44(6), 2059-2068. doi:10.1002/pola.21319

Nie, H., Zhao, Y., Zhang, M., Ma, Y., Baumgarten, M., & Müllen, K. (2011). Detection of TNT explosives with a new fluorescent conjugated polycarbazole polymer. Chem. Commun., 47(4), 1234-1236. doi:10.1039/c0cc03659e

Qin, A., Lam, J. W. Y., Tang, L., Jim, C. K. W., Zhao, H., Sun, J., & Tang, B. Z. (2009). Polytriazoles with Aggregation-Induced Emission Characteristics: Synthesis by Click Polymerization and Application as Explosive Chemosensors. Macromolecules, 42(5), 1421-1424. doi:10.1021/ma8024706

Kumar, A., Pandey, M. K., Anandakathir, R., Mosurkal, R., Parmar, V. S., Watterson, A. C., & Kumar, J. (2010). Sensory response of pegylated and siloxanated 4,8-dimethylcoumarins: A fluorescence quenching study by nitro aromatics. Sensors and Actuators B: Chemical, 147(1), 105-110. doi:10.1016/j.snb.2010.02.004

Nguyen, H. H., Li, X., Wang, N., Wang, Z. Y., Ma, J., Bock, W. J., & Ma, D. (2009). Fiber-Optic Detection of Explosives Using Readily Available Fluorescent Polymers. Macromolecules, 42(4), 921-926. doi:10.1021/ma802460q

Albert, K. J., & Walt, D. R. (2000). High-Speed Fluorescence Detection of Explosives-like Vapors. Analytical Chemistry, 72(9), 1947-1955. doi:10.1021/ac991397w

Gao, D., Wang, Z., Liu, B., Ni, L., Wu, M., & Zhang, Z. (2008). Resonance Energy Transfer-Amplifying Fluorescence Quenching at the Surface of Silica Nanoparticles toward Ultrasensitive Detection of TNT. Analytical Chemistry, 80(22), 8545-8553. doi:10.1021/ac8014356

Fang, Q., Geng, J., Liu, B., Gao, D., Li, F., Wang, Z., … Zhang, Z. (2009). Inverted Opal Fluorescent Film Chemosensor for the Detection of Explosive Nitroaromatic Vapors through Fluorescence Resonance Energy Transfer. Chemistry - A European Journal, 15(43), 11507-11514. doi:10.1002/chem.200901488

Geng, J., Liu, P., Liu, B., Guan, G., Zhang, Z., & Han, M.-Y. (2010). A Reversible Dual-Response Fluorescence Switch for the Detection of Multiple Analytes. Chemistry - A European Journal, 16(12), 3720-3727. doi:10.1002/chem.200902721

Yang, J., Aschemeyer, S., Martinez, H. P., & Trogler, W. C. (2010). Hollow silica nanospheres containing a silafluorene–fluorene conjugated polymer for aqueous TNT and RDX detection. Chemical Communications, 46(36), 6804. doi:10.1039/c0cc01906b

Feng, J., Li, Y., & Yang, M. (2010). Conjugated polymer-grafted silica nanoparticles for the sensitive detection of TNT. Sensors and Actuators B: Chemical, 145(1), 438-443. doi:10.1016/j.snb.2009.12.056

Tao, S., Shi, Z., Li, G., & Li, P. (2006). Hierarchically Structured Nanocomposite Films as Highly Sensitive Chemosensory Materials for TNT Detection. ChemPhysChem, 7(9), 1902-1905. doi:10.1002/cphc.200600185

Tao, S., Yin, J., & Li, G. (2008). High-performance TNT chemosensory materials based on nanocomposites with bimodal porous structures. Journal of Materials Chemistry, 18(40), 4872. doi:10.1039/b802486c

Tao, S., Li, G., & Zhu, H. (2006). Metalloporphyrins as sensing elements for the rapid detection of trace TNT vapor. Journal of Materials Chemistry, 16(46), 4521. doi:10.1039/b606061g

Tao, S., & Li, G. (2007). Porphyrin-doped mesoporous silica films for rapid TNT detection. Colloid and Polymer Science, 285(7), 721-728. doi:10.1007/s00396-007-1643-7

Yildirim, A., Budunoglu, H., Deniz, H., O. Guler, M., & Bayindir, M. (2010). Template-Free Synthesis of Organically Modified Silica Mesoporous Thin Films for TNT Sensing. ACS Applied Materials & Interfaces, 2(10), 2892-2897. doi:10.1021/am100568c

Li, H., Wang, J., Pan, Z., Cui, L., Xu, L., Wang, R., … Jiang, L. (2011). Amplifying fluorescence sensing based on inverse opal photonic crystal toward trace TNT detection. J. Mater. Chem., 21(6), 1730-1735. doi:10.1039/c0jm02554b

Tao, S., Li, G., & Yin, J. (2007). Fluorescent nanofibrous membranes for trace detection of TNT vapor. Journal of Materials Chemistry, 17(26), 2730. doi:10.1039/b618122h

Naddo, T., Che, Y., Zhang, W., Balakrishnan, K., Yang, X., Yen, M., … Zang, L. (2007). Detection of Explosives with a Fluorescent Nanofibril Film. Journal of the American Chemical Society, 129(22), 6978-6979. doi:10.1021/ja070747q

Content, S., Trogler, W. C., & Sailor, M. J. (2000). Detection of Nitrobenzene, DNT, and TNT Vapors by Quenching of Porous Silicon Photoluminescence. Chemistry - A European Journal, 6(12), 2205-2213. doi:10.1002/1521-3765(20000616)6:12<2205::aid-chem2205>3.0.co;2-a

Kang, J., Ding, L., Lü, F., Zhang, S., & Fang, Y. (2006). Dansyl-based fluorescent film sensor for nitroaromatics in aqueous solution. Journal of Physics D: Applied Physics, 39(23), 5097-5102. doi:10.1088/0022-3727/39/23/030

Zhang, S., Lü, F., Gao, L., Ding, L., & Fang, Y. (2007). Fluorescent Sensors for Nitroaromatic Compounds Based on Monolayer Assembly of Polycyclic Aromatics. Langmuir, 23(3), 1584-1590. doi:10.1021/la062773s

He, G., Zhang, G., Lü, F., & Fang, Y. (2009). Fluorescent Film Sensor for Vapor-Phase Nitroaromatic Explosives via Monolayer Assembly of Oligo(diphenylsilane) on Glass Plate Surfaces. Chemistry of Materials, 21(8), 1494-1499. doi:10.1021/cm900013f

Goodpaster, J. V., & McGuffin, V. L. (2001). Fluorescence Quenching as an Indirect Detection Method for Nitrated Explosives. Analytical Chemistry, 73(9), 2004-2011. doi:10.1021/ac001347n

Hughes, A. D., Glenn, I. C., Patrick, A. D., Ellington, A., & Anslyn, E. V. (2008). A Pattern Recognition Based Fluorescence Quenching Assay for the Detection and Identification of Nitrated Explosive Analytes. Chemistry - A European Journal, 14(6), 1822-1827. doi:10.1002/chem.200701546

Malashikhin, S., & Finney, N. S. (2008). Fluorescent Signaling Based on Sulfoxide Profluorophores: Application to the Visual Detection of the Explosive TATP. Journal of the American Chemical Society, 130(39), 12846-12847. doi:10.1021/ja802989v

Focsaneanu, K.-S., & Scaiano, J. C. (2005). Potential analytical applications of differential fluorescence quenching: pyrene monomer and excimer emissions as sensors for electron deficient molecules. Photochemical & Photobiological Sciences, 4(10), 817. doi:10.1039/b505249a

Lee, Y. H., Liu, H., Lee, J. Y., Kim, S. H., Kim, S. K., Sessler, J. L., … Kim, J. S. (2010). Dipyrenylcalix[4]arene-A Fluorescence-Based Chemosensor for Trinitroaromatic Explosives. Chemistry - A European Journal, 16(20), 5895-5901. doi:10.1002/chem.200903439

Jian, C., & Seitz, W. R. (1990). Membrane for in situ optical detection of organic nitro compounds based on fluorescence quenching. Analytica Chimica Acta, 237, 265-271. doi:10.1016/s0003-2670(00)83928-8

Vijayakumar, C., Tobin, G., Schmitt, W., Kim, M.-J., & Takeuchi, M. (2010). Detection of explosive vapors with a charge transfer molecule: self-assembly assisted morphology tuning and enhancement in sensing efficiency. Chemical Communications, 46(6), 874. doi:10.1039/b921520d

Zyryanov, G. V., Palacios, M. A., & Anzenbacher, P. (2008). Simple Molecule-Based Fluorescent Sensors for Vapor Detection of TNT. Organic Letters, 10(17), 3681-3684. doi:10.1021/ol801030u

Cavaye, H., Shaw, P. E., Wang, X., Burn, P. L., Lo, S.-C., & Meredith, P. (2010). Effect of Dimensionality in Dendrimeric and Polymeric Fluorescent Materials for Detecting Explosives. Macromolecules, 43(24), 10253-10261. doi:10.1021/ma102369q

Ponnu, A., & Anslyn, E. V. (2010). A fluorescence-based cyclodextrin sensor to detect nitroaromatic explosives. Supramolecular Chemistry, 22(1), 65-71. doi:10.1080/10610270903378032

Zhang, C., Che, Y., Yang, X., Bunes, B. R., & Zang, L. (2010). Organic nanofibrils based on linear carbazole trimer for explosive sensing. Chemical Communications, 46(30), 5560. doi:10.1039/c0cc01258k

Li, Z., Dong, Y. Q., Lam, J. W. Y., Sun, J., Qin, A., Häußler, M., … Tang, B. Z. (2009). Functionalized Siloles: Versatile Synthesis, Aggregation-Induced Emission, and Sensory and Device Applications. Advanced Functional Materials, 19(6), 905-917. doi:10.1002/adfm.200801278

Dong, Y., Lam, J. W. Y., Qin, A., Li, Z., Liu, J., Sun, J., … Tang, B. Z. (2007). Endowing hexaphenylsilole with chemical sensory and biological probing properties by attaching amino pendants to the silolyl core. Chemical Physics Letters, 446(1-3), 124-127. doi:10.1016/j.cplett.2007.08.030

Wang, L., Zhou, Y., Yan, J., Wang, J., Pei, J., & Cao, Y. (2009). Organic Supernanostructures Self-Assembled via Solution Process for Explosive Detection. Langmuir, 25(3), 1306-1310. doi:10.1021/la8038494

Rahman, M., & Harmon, H. J. (2006). Absorbance change and static quenching of fluorescence of meso-tetra(4-sulfonatophenyl)porphyrin (TPPS) by trinitrotoluene (TNT). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 65(3-4), 901-906. doi:10.1016/j.saa.2006.01.029

Hikal, W. M., & Harmon, H. J. (2008). Early events in 2,4,6-trinitrotoluene (TNT) degradation by porphyrins: Binding of TNT to porphyrin by hydrophobic and hydrogen bonds. Journal of Hazardous Materials, 154(1-3), 826-831. doi:10.1016/j.jhazmat.2007.10.098

Olley, D. A., Wren, E. J., Vamvounis, G., Fernee, M. J., Wang, X., Burn, P. L., … Shaw, P. E. (2011). Explosive Sensing with Fluorescent Dendrimers: The Role of Collisional Quenching†. Chemistry of Materials, 23(3), 789-794. doi:10.1021/cm1020355

Glazier, S., Barron, J. A., Morales, N., Ruschak, A. M., Houston, P. L., & Abruña, H. D. (2003). Quenching Dynamics of the Photoluminescence of [Ru(bpy)3]2+-Pendant PAMAM Dendrimers by Nitro Aromatics and Other Materials. Macromolecules, 36(4), 1272-1278. doi:10.1021/ma020045f

Ghosh, S., & Mukherjee, P. S. (2008). Self-Assembly of a Nanoscopic Prism via a New Organometallic Pt3Acceptor and Its Fluorescent Detection of Nitroaromatics. Organometallics, 27(3), 316-319. doi:10.1021/om701082y

Ghosh, S., Gole, B., Bar, A. K., & Mukherjee, P. S. (2009). Self-Assembly of Molecular Prisms via Pt3Organometallic Acceptors and a Pt2Organometallic Clip. Organometallics, 28(15), 4288-4296. doi:10.1021/om900309x

Germain, M. E., Vargo, T. R., Khalifah, P. G., & Knapp, M. J. (2007). Fluorescent Detection of Nitroaromatics and 2,3-Dimethyl- 2,3-dinitrobutane (DMNB) by a Zinc Complex:  (salophen)Zn. Inorganic Chemistry, 46(11), 4422-4429. doi:10.1021/ic062012c

Germain, M. E., & Knapp, M. J. (2008). Discrimination of Nitroaromatics and Explosives Mimics by a Fluorescent Zn(salicylaldimine) Sensor Array. Journal of the American Chemical Society, 130(16), 5422-5423. doi:10.1021/ja800403k

Germain, M. E., Vargo, T. R., McClure, B. A., Rack, J. J., Van Patten, P. G., Odoi, M., & Knapp, M. J. (2008). Quenching Mechanism of Zn(Salicylaldimine) by Nitroaromatics. Inorganic Chemistry, 47(14), 6203-6211. doi:10.1021/ic702469q

Germain, M. E., & Knapp, M. J. (2008). Turn-on Fluorescence Detection of H2O2and TATP. Inorganic Chemistry, 47(21), 9748-9750. doi:10.1021/ic801317x

Andrew, T. L., & Swager, T. M. (2007). A Fluorescence Turn-On Mechanism to Detect High Explosives RDX and PETN. Journal of the American Chemical Society, 129(23), 7254-7255. doi:10.1021/ja071911c

Schulte-Ladbeck, R., Kolla, P., & Karst, U. (2003). Trace Analysis of Peroxide-Based Explosives. Analytical Chemistry, 75(4), 731-735. doi:10.1021/ac020392n

Sella, E., & Shabat, D. (2008). Self-immolative dendritic probe for direct detection of triacetone triperoxide. Chemical Communications, (44), 5701. doi:10.1039/b814855d

Meaney, M. S., & McGuffin, V. L. (2008). Investigation of common fluorophores for the detection of nitrated explosives by fluorescence quenching. Analytica Chimica Acta, 610(1), 57-67. doi:10.1016/j.aca.2008.01.016

Caron, T., Guillemot, M., Montméat, P., Veignal, F., Perraut, F., Prené, P., & Serein-Spirau, F. (2010). Ultra trace detection of explosives in air: Development of a portable fluorescent detector. Talanta, 81(1-2), 543-548. doi:10.1016/j.talanta.2009.12.040

Jiang, Y., Zhao, H., Zhu, N., Lin, Y., Yu, P., & Mao, L. (2008). A Simple Assay for Direct Colorimetric Visualization of Trinitrotoluene at Picomolar Levels Using Gold Nanoparticles. Angewandte Chemie International Edition, 47(45), 8601-8604. doi:10.1002/anie.200804066

Dasary, S. S. R., Singh, A. K., Senapati, D., Yu, H., & Ray, P. C. (2009). Gold Nanoparticle Based Label-Free SERS Probe for Ultrasensitive and Selective Detection of Trinitrotoluene. Journal of the American Chemical Society, 131(38), 13806-13812. doi:10.1021/ja905134d

Kim, D.-S., Lynch, V. M., Nielsen, K. A., Johnsen, C., Jeppesen, J. O., & Sessler, J. L. (2009). A chloride-anion insensitive colorimetric chemosensor for trinitrobenzene and picric acid. Analytical and Bioanalytical Chemistry, 395(2), 393-400. doi:10.1007/s00216-009-2819-4

Nielsen, K. A., Cho, W.-S., Jeppesen, J. O., Lynch, V. M., Becher, J., & Sessler, J. L. (2004). Tetra-TTF Calix[4]pyrrole:  A Rationally Designed Receptor for Electron-Deficient Neutral Guests. Journal of the American Chemical Society, 126(50), 16296-16297. doi:10.1021/ja044664a

Park, J. S., Le Derf, F., Bejger, C. M., Lynch, V. M., Sessler, J. L., Nielsen, K. A., … Jeppesen, J. O. (2009). Positive Homotropic Allosteric Receptors for Neutral Guests: Annulated Tetrathiafulvalene-Calix[4]pyrroles as Colorimetric Chemosensors for Nitroaromatic Explosives. Chemistry - A European Journal, 16(3), 848-854. doi:10.1002/chem.200902924

Dorozhkin, L. ., Nefedov, V. ., Sabelnikov, A. ., & Sevastjanov, V. . (2004). Detection of trace amounts of explosives and/or explosive related compounds on various surfaces by a new sensing technique/material. Sensors and Actuators B: Chemical, 99(2-3), 568-570. doi:10.1016/j.snb.2004.01.007

Chen, A., Sun, H., Pyayt, A., Zhang, X., Luo, J., Jen, A., … Huang, D. (2008). Chromophore-Containing Polymers for Trace Explosive Sensors. The Journal of Physical Chemistry C, 112(21), 8072-8078. doi:10.1021/jp7118372

Ponnu, A., Edwards, N. Y., & Anslyn, E. V. (2008). Pattern recognition based identification of nitrated explosives. New Journal of Chemistry, 32(5), 848. doi:10.1039/b801589a

Janovsky, J. V., & Erb, L. (1886). Zur Kenntniss der directen Brom- und Nitrosubstitutionsproducte der Azokörper. Berichte der deutschen chemischen Gesellschaft, 19(2), 2155-2158. doi:10.1002/cber.188601902113

English, F. L. (1948). Colorimetric Determination of Certain Dinitro Aromatics. Analytical Chemistry, 20(8), 745-746. doi:10.1021/ac60020a019

Amas, S. A. H., & Yallop, H. J. (1966). The detection of dinitro and trinitro aromatic bodies in industrial blasting explosives. The Analyst, 91(1082), 336. doi:10.1039/an9669100336

Amas, S. A. H., & Yallop, H. J. (1966). The Identification of Industrial Blasting Explosives of the Gelignite Type. Journal of the Forensic Science Society, 6(4), 185-188. doi:10.1016/s0015-7368(66)70334-x

Amas, S. A. H., & Yallop, H. J. (1969). A test for cyclotrimethylenetrinitramine. The Analyst, 94(1122), 828. doi:10.1039/an9699400828

Schulte-Ladbeck, R., Kolla, P., & Karst, U. (2002). A field test for the detection of peroxide-based explosives. The Analyst, 127(9), 1152-1154. doi:10.1039/b206673b

Eren, Ş., Üzer, A., Can, Z., Kapudan, T., Erçağ, E., & Apak, R. (2010). Determination of peroxide-based explosives with copper(ii)–neocuproine assay combined with a molecular spectroscopic sensor. The Analyst, 135(8), 2085. doi:10.1039/b925653a

Lin, H., & Suslick, K. S. (2010). A Colorimetric Sensor Array for Detection of Triacetone Triperoxide Vapor. Journal of the American Chemical Society, 132(44), 15519-15521. doi:10.1021/ja107419t

Forzani, E. S., Lu, D., Leright, M. J., Aguilar, A. D., Tsow, F., Iglesias, R. A., … Tao, N. (2009). A Hybrid Electrochemical−Colorimetric Sensing Platform for Detection of Explosives. Journal of the American Chemical Society, 131(4), 1390-1391. doi:10.1021/ja809104h

McHugh, C. J., Keir, R., Graham, D., & Smith, W. E. (2002). Selective functionalisation of TNT for sensitive detection by SERRSElectronic supplementary information (ESI) available: full experimental details on the synthesis and analysis of the reported compounds. See http://www.rsc.org/suppdata/cc/b1/b110972c/. Chemical Communications, (6), 580-581. doi:10.1039/b110972c

Lu, Q., Collins, G. E., Smith, M., & Wang, J. (2002). Sensitive capillary electrophoresis microchip determination of trinitroaromatic explosives in nonaqueous electrolyte following solid phase extraction. Analytica Chimica Acta, 469(2), 253-260. doi:10.1016/s0003-2670(02)00662-1

Almog, J., Klein, A., Tamiri, T., Shloosh, Y., & Abramovich-Bar, S. (2005). A Field Diagnostic Test for the Improvised Explosive Urea Nitrate. Journal of Forensic Sciences, 50(3), 1-5. doi:10.1520/jfs2004278

Wang, J., Mei, J., Yuan, W., Lu, P., Qin, A., Sun, J., … Tang, B. Z. (2011). Hyperbranched polytriazoles with high molecular compressibility: aggregation-induced emission and superamplified explosive detection. Journal of Materials Chemistry, 21(12), 4056. doi:10.1039/c0jm04100a

Vajpayee, V., Kim, H., Mishra, A., Mukherjee, P. S., Stang, P. J., Lee, M. H., … Chi, K.-W. (2011). Self-assembled molecular squares containing metal-based donor: synthesis and application in the sensing of nitro-aromatics. Dalton Transactions, 40(13), 3112. doi:10.1039/c0dt01481h

Andrew, T. L., & Swager, T. M. (2011). Detection of Explosives via Photolytic Cleavage of Nitroesters and Nitramines. The Journal of Organic Chemistry, 76(9), 2976-2993. doi:10.1021/jo200280c

Xu, H., Liu, F., Cui, Y., Chen, B., & Qian, G. (2011). A luminescent nanoscale metal–organic framework for sensing of nitroaromatic explosives. Chemical Communications, 47(11), 3153. doi:10.1039/c0cc05166g

Pramanik, S., Zheng, C., Zhang, X., Emge, T. J., & Li, J. (2011). New Microporous Metal−Organic Framework Demonstrating Unique Selectivity for Detection of High Explosives and Aromatic Compounds. Journal of the American Chemical Society, 133(12), 4153-4155. doi:10.1021/ja106851d

Qu, W.-G., Deng, B., Zhong, S.-L., Shi, H.-Y., Wang, S.-S., & Xu, A.-W. (2011). Plasmonic resonance energy transfer-based nanospectroscopy for sensitive and selective detection of 2,4,6-trinitrotoluene (TNT). Chem. Commun., 47(4), 1237-1239. doi:10.1039/c0cc02752a

Wang, D., Chen, A., Jang, S.-H., Yip, H.-L., & Jen, A. K.-Y. (2011). Sensitivity of titania(B) nanowires to nitroaromatic and nitroamino explosives at room temperature via surface hydroxyl groups. Journal of Materials Chemistry, 21(20), 7269. doi:10.1039/c1jm10124b

Liao, M.-Y., Huang, C.-C., Chang, M.-C., Lin, S.-F., Liu, T.-Y., Su, C.-H., … Lin, H.-P. (2011). Synthesis of magnetic hollow nanotubes based on the kirkendall effect for MR contrast agent and colorimetric hydrogen peroxide sensor. Journal of Materials Chemistry, 21(22), 7974. doi:10.1039/c1jm10429b

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record