- -

Using finite mixture models in thermal-hydraulics system code uncertainty analysis

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Using finite mixture models in thermal-hydraulics system code uncertainty analysis

Show full item record

Carlos Alberola, S.; Sánchez Galdón, AI.; Ginestar Peiro, D.; Martorell Alsina, SS. (2013). Using finite mixture models in thermal-hydraulics system code uncertainty analysis. Nuclear Engineering and Design. 262:306-318. doi:10.1016/j.nucengdes.2013.04.030

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/37370

Files in this item

Item Metadata

Title: Using finite mixture models in thermal-hydraulics system code uncertainty analysis
Author: Carlos Alberola, Sofía Sánchez Galdón, Ana Isabel Ginestar Peiro, Damián Martorell Alsina, Sebastián Salvador
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Grupo de Medioambiente y Seguridad Industrial (MEDASEGI)
Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària
Issued date:
Abstract:
Nuclear Power Plant safety analysis is mainly based on the use of best estimate (BE) codes that predict the plant behavior under normal or accidental conditions. As the BE codes introduce uncertainties due to uncertainty ...[+]
Subjects: Computational costs , Current regulations , Expectation - maximizations , Finite mixture models , k-Means algorithm , Nuclear power plant safeties , Thermal hydraulics , Uncertainty assessment , Reactor safety margins , Adjoint sensitivity-analysis , Artificial neural-networks , Parameters
Copyrigths: Reserva de todos los derechos
Source:
Nuclear Engineering and Design. (issn: 0029-5493 )
DOI: 10.1016/j.nucengdes.2013.04.030
Publisher:
Elsevier
Publisher version: http://dx.doi.org/10.1016/j.nucengdes.2013.04.030
Thanks:
This work has been partially supported by the Consejo de Seguridad Nuclear under the contract with reference STN/2369/08/640.
Type: Artículo

This item appears in the following Collection(s)

Show full item record